Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimising water use, maintaining productivity

07.01.2014
As the climate warms up, more and more farmers in Switzerland need to irrigate their crops. This is problematic because many rivers carry less water. If the increase in water use is limited, agricultural production will not be significantly lowered. This conclusion was reached on the basis of models created in a project of the National Research Programme "Sustainable Water Management" (NRP 61).

Climate change will lead to regional water shortages. If the use of river water is not regulated, both water quality and biodiversity could be negatively affected. Overuse can be avoided by redirecting water from larger bodies of water via pipes and distribution networks. This comes at a considerable price and has an impact on the environment.

Testing options on the basis of case studies

Researchers of an NRP 61 project investigated alternatives not in terms of sourcing more water but rather in terms of reducing the agricultural need for water. Based on models and an interdisciplinary approach, they tested a variety of options for a dry area (Plain of the Broye) and an area less dry (Lake of Greifen) up to 2050. They also took into consideration a number of economic and political conditions.

"The aim is to maintain productivity while minimising the use of water and the impact on the environment," says Jürg Fuhrer, leader of the project "Water demand in Swiss agriculture and sustainable adaptive options for land and water management" (AGWAM) at Agroscope.

The authors of the study have reached the conclusion that, even if the climate changes, the cultivation of agricultural land will remain viable, at least theoretically, in areas that are threatened by droughts such as the Plain of the Broye. Farmers in these areas need to limit the climate-related increase of water use and at the same time the losses in production and income. The necessary adaptations include improving irrigation efficiency, changing the mix of cultivated crops to include more winter crops such as winter rape seed or barley, adapting soil management and adjusting the organisation of agricultural land, i.e. which crops are best grown in which place.

Step-by-step change to more water-sensitive production

The aspect of the study that deals with farm management shows that farms will take measures to reduce their water needs if the price of water rises and water quotas are introduced. An environmental performance analysis shows, however, that agricultural production will continue to negatively impact the environment even if all measures considered in the study are taken. Further steps towards a resource-efficient practice are necessary, in particular, if the emission of greenhouse gases is to be reduced.

Society, the authorities and politicians will have to think about introducing incentives and rules to encourage a step-by-step transition towards an agricultural production that is more economical with water. Alternatively, they can implement purely technical and less ecological measures to maintain the status quo. His team's study, says Fuhrer, provides the scientific basis for a discussion which will become increasingly pertinent in view of the expected climate change and the related risks for agriculture.

(*) Jürg Fuhrer, Danielle Tendall, Tommy Klein, Niklaus Lehmann, and Annelie Holzkämper (2013). Water Demand in Swiss Agriculture - Sustainable Adaptive Options for Land and Water Management to Mitigate Impacts of Climate Change (NRP61 Project AGWAM)

http://www.agroscope.ch/publikationen/02121/04397/index.html?lang=en

1st Agroscope Sustainability Conference

On 23 January 2014, the Institute of Sustainability Studies at Agroscope will organise a conference on "Water in agriculture - today and tomorrow". The researchers will present and discuss new insights and approaches for adapting to the changing climate. The political environment in which this adaptation will have to take place will also be discussed.

On this subject

More detailed information and registration (by 14 January) for the Agroscope Sustainability Conference on "Water in Agriculture - today and tomorrow":

http://www.agroscope.ch/veranstaltungen/00610/index.html?lang=de&direction=asc&orderby

The National Research Programme “Sustainable Water Management” (NRP 61)
The National Research Programme “Sustainable Water Management” (NRP 61) is developing scientific principles and methods for the sustainable management of water resources, which are under increasing pressure. NRP 61 explores the effects of climate and social changes on these resources and identifies the risks and future conflicts associated with their use. NRP 61 operates with CHF 12 million for a research duration of four years. www.nfp61.ch

Contact

Professor Jürg Fuhrer
Air Pollution / Climate group
Institute of Sustainability Studies at Agroscope
Reckenholzstrasse 191
CH-8046 Zurich
Tel.: +41 44 377 75 05
E-mail: juerg.fuhrer@agroscope.admin.ch

Media - Abteilung Kommunikation | idw
Further information:
http://www.snf.ch/en/researchinFocus/media/press-releases/Pages/default.aspx

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>