Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milling machines could consume less without their productivity being compromised

20.12.2011
There are few places in the world where the machine tool has more tradition than in the Basque Country. And in such a competitive market, how is one to draw attention? By thinking differently, just as Juanjo Zulaika has been able to demonstrate.

This Tecnalia researcher set out to design an eco-efficient, high-volume milling machine, but without compromising its productivity: “Normally, the aim of these designs is to make the machine as solid as possible. But that is not the case in my model, and this signifies a profound change in this area.” He has reduced mass in order to give priority to dynamism, and in this way has cut consumption by 20%. He submitted his thesis at the University of the Basque Country (UPV/EHU) under the title Metodología para la concepción de fresadoras de gran volúmen productivas y ecoeficientes (Methodology for the conception of eco-efficient, high-volume production milling machines). This innovative approach has also been applauded by the highest-impact journal in the sector (International Journal of Machine Tools and Manufacture).

Large-volume milling machines are about three or four metres high and 10-15 metres long. They are used to produce large-sized parts, like supports for railway carriages (‘boogies’), for example. Equipment of this type tends to be heavy and unwieldy, difficult to move, and that is why it consumes a large amount of energy in these tasks. That is what Zulaika’s research has focussed on. For example, if the machine has a column weighing five tonnes, he has set about making it lighter and leaving it at three or four tonnes: “If I reduce the weight of the machine’s components by 20%, the energy reduction is proportional.”

Productivity, the starting point

There have basically been two limits on these weight reduction tasks: the risk of weakening the components too much and having to maintain the same productivity. There lies the crux of the research, since Zulaika has created an innovative simulation model to establish and find out these limits in advance. It is innovative, because the aim is productivity, and all the rest is built up on the basis of this: “I have incorporated the dynamics of the machine and that of the process into an inclusive model. I decide what the aim is as regards productivity, and the model tells me what limits the milling machine has. It is as if a doctor were to diagnose the machine: we are told which components are too robust and which are too weak.”

What is more, this researcher has applied the simulation model he has created to a real milling machine, thus verifying its usefulness. Specifically, the model has enabled him to develop a new machine four metres high for a company in the sector. The results have exceeded expectations.

Firstly, Zulaika carried out a diagnosis of this new milling machine, and to do so, took as the starting point the level of productivity of the machine used previously at this company. Following the indications of the simulation model, he reduced the weight of the parts of the machine that were too robust and reinforced the weakened ones, thus achieving a 20% reduction in its mass. But he also added shock absorbers to cushion the jolts between the components when the milling machine is working. Thanks to this complementary measure, productivity has not only been maintained but also increased. “The aim in itself was to maintain productivity and to cut energy consumption; that is sufficient for any company. But in the end, when the two measures were combined, the results were better than expected,” explains the researcher. In comparison with the machine previously used at this company, productivity has increased 100% in the best tests. There they now work with the new optimised milling machine made possible by the simulation model.

About the author

Juan José Zulaika-Muniain (Zarautz, Basque Country, 1971) is a graduate in Industrial Engineering (University of Navarre) and a Doctor in Mechanical Engineering (UPV/EHU). He wrote up his PhD thesis under the supervision of Norberto López de Lacalle-Marcaide, Professor of Manufacturing at the UPV/EHU. The research was done at Tecnalia’s Industrial Systems Unit. Work was also done in collaboration with the company Nicolás Correa S.A. of Burgos (Spain). Zulaika currently works as a researcher at Tecnalia.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht Sustainable forest management contributes more to climate protection than forest wilderness
07.02.2020 | Max-Planck-Institut für Biogeochemie

nachricht Microscopic partners could help plants survive stressful environments
30.01.2020 | Washington State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>