Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milling machines could consume less without their productivity being compromised

20.12.2011
There are few places in the world where the machine tool has more tradition than in the Basque Country. And in such a competitive market, how is one to draw attention? By thinking differently, just as Juanjo Zulaika has been able to demonstrate.

This Tecnalia researcher set out to design an eco-efficient, high-volume milling machine, but without compromising its productivity: “Normally, the aim of these designs is to make the machine as solid as possible. But that is not the case in my model, and this signifies a profound change in this area.” He has reduced mass in order to give priority to dynamism, and in this way has cut consumption by 20%. He submitted his thesis at the University of the Basque Country (UPV/EHU) under the title Metodología para la concepción de fresadoras de gran volúmen productivas y ecoeficientes (Methodology for the conception of eco-efficient, high-volume production milling machines). This innovative approach has also been applauded by the highest-impact journal in the sector (International Journal of Machine Tools and Manufacture).

Large-volume milling machines are about three or four metres high and 10-15 metres long. They are used to produce large-sized parts, like supports for railway carriages (‘boogies’), for example. Equipment of this type tends to be heavy and unwieldy, difficult to move, and that is why it consumes a large amount of energy in these tasks. That is what Zulaika’s research has focussed on. For example, if the machine has a column weighing five tonnes, he has set about making it lighter and leaving it at three or four tonnes: “If I reduce the weight of the machine’s components by 20%, the energy reduction is proportional.”

Productivity, the starting point

There have basically been two limits on these weight reduction tasks: the risk of weakening the components too much and having to maintain the same productivity. There lies the crux of the research, since Zulaika has created an innovative simulation model to establish and find out these limits in advance. It is innovative, because the aim is productivity, and all the rest is built up on the basis of this: “I have incorporated the dynamics of the machine and that of the process into an inclusive model. I decide what the aim is as regards productivity, and the model tells me what limits the milling machine has. It is as if a doctor were to diagnose the machine: we are told which components are too robust and which are too weak.”

What is more, this researcher has applied the simulation model he has created to a real milling machine, thus verifying its usefulness. Specifically, the model has enabled him to develop a new machine four metres high for a company in the sector. The results have exceeded expectations.

Firstly, Zulaika carried out a diagnosis of this new milling machine, and to do so, took as the starting point the level of productivity of the machine used previously at this company. Following the indications of the simulation model, he reduced the weight of the parts of the machine that were too robust and reinforced the weakened ones, thus achieving a 20% reduction in its mass. But he also added shock absorbers to cushion the jolts between the components when the milling machine is working. Thanks to this complementary measure, productivity has not only been maintained but also increased. “The aim in itself was to maintain productivity and to cut energy consumption; that is sufficient for any company. But in the end, when the two measures were combined, the results were better than expected,” explains the researcher. In comparison with the machine previously used at this company, productivity has increased 100% in the best tests. There they now work with the new optimised milling machine made possible by the simulation model.

About the author

Juan José Zulaika-Muniain (Zarautz, Basque Country, 1971) is a graduate in Industrial Engineering (University of Navarre) and a Doctor in Mechanical Engineering (UPV/EHU). He wrote up his PhD thesis under the supervision of Norberto López de Lacalle-Marcaide, Professor of Manufacturing at the UPV/EHU. The research was done at Tecnalia’s Industrial Systems Unit. Work was also done in collaboration with the company Nicolás Correa S.A. of Burgos (Spain). Zulaika currently works as a researcher at Tecnalia.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>