Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microjet generator for highly viscous fluids

13.02.2018

Simple device for microjets of fluids similar even to honey and with non-Newtonian properties

Liquid jet is utilized in various key technologies such as inkjet printing. However, most methods can eject only low viscosity liquid, which is almost the same viscosity of water.


Video: This is a liquid jet generator with highly viscous fluids. The device consists simple structure and can eject highly viscous liquid and nail polish (viscous non-Newtonian liquid).

Credit: Tokyo University of Agriculture and Technology, Tagawa Yoshiyuki Lab

This limitation of the viscosity causes the blurring and dulling color of the ink. To solve these problems, the method of ejecting highly viscous liquid jet is required.

Researchers at Tokyo University of Agriculture and Technology have newly proposed a device of generating microjet with high viscosity, like a honey. To produce the viscous liquid jets, we use an impulsive force i.e. the liquid jet is induced by adding an impact applied at the bottom of a liquid-filled container.

Moreover our device relies on additional trick: the wettable thin tube is inserted into the liquid, where liquid level inside the tube is kept deeper than that outside the tube. We find that the liquid inside the tube is significantly accelerated thanks to this trick.

As a result, our device can eject a liquid jet with high viscousity, which is more than 1,000 times viscos than water and with non-Newtonian properties such as nail polish. We have also revealed the mechanism of our device via conducting experiments and numerical simulations.

Our device overcomes the existing problems such as the limitation of the viscosity and solidifies the base for the next generation manufacturing such as 3D manufacturing and biological printings.

###

This work was supported by JSPS KAKENHI Grant Numbers 26709007,17H01246,17J06711."

Media Contact

Yoshiyuki Tagawa
tagawayo@cc.tuat.ac.jp
81-423-887-407

http://www.tuat.ac.jp/en/ 

Yoshiyuki Tagawa | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

nachricht Goldilocks principle in biology -- fine-tuning the 'just right' signal load
15.10.2018 | Aarhus University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>