Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many facets of biodiversity reduce variability of grassland biomass production

28.08.2018

A new study shows that, in addition to species richness, plant evolutionary history plays a critical role in regulating year-to-year variation of biomass production in grasslands. In the face of climate change, understanding the causes of variability in key ecosystem services such as biomass production is essential. A team of researchers led by Dr. Dylan Craven from the University of Göttingen has published the results in the new issue of Nature Ecology & Evolution. They show that multiple factors, including biodiversity and climate, jointly reduce annual variation in grassland productivity.

Biodiversity is much more than just counting species; it also includes diversity in how plants function and in the history of how they have evolved. Despite the growing appreciation for biodiversity and its role in buffering the impacts of vital ecosystem services, these other aspects of biodiversity are frequently overlooked.


Grassland

Prof. Dr. Holger Kreft


Dr. Dylan Craven

private

An international team of researchers examined how multiple facets of biodiversity contribute to year-to-year variation in grassland biomass production. The researchers measured biomass, which is the dry weight of plant matter (including grassland and other species).

“We show that grassland communities with high species richness and high diversity in evolutionary history show reduced variation in biomass production,” said Dylan Craven, lead author of the study and postdoctoral researcher at the University of Göttingen.

“Our results suggest that greater diversity in evolutionary history makes biomass production in grasslands more stable because these communities are less vulnerable to herbivore attacks or pathogen outbreaks.”

The researchers also found that biomass production of plant communities dominated by slow-growing species typically varied less. Peter Manning, the senior author of the study, said that “we were surprised by these results because we had expected that communities with a greater diversity in characteristics related to plant growth rates would have more stable biomass production but actually species richness as measured by evolutionary history and genetic diversity were better predictors.”

However, the researchers caution that lower year-to-year variation does not imply that grasslands will be more productive, and that measures of stability that consider over- and under-production may be more relevant for agroecological applications.

Wissenschaftliche Ansprechpartner:

Dr. Dylan Craven
University of Göttingen – Department of Biodiversity, Macroecology and Biogeography
Büsgenweg 1 – 37077 Göttingen
Phone: +49-(0)551-3910443
E-Mail: dylan.craven@uni-goettingen.de

www.uni-goettingen.de/en/585428.html

Originalpublikation:

Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology & Evolution (2018). doi: 10.1038/s41559-018-0647-7

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>