Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making barley less thirsty

30.10.2012
Wageningen scientists discover genetic factor that makes barley plants resistant to salt

Barley breeders may soon develop varieties of barley which are both less sensitive to high concentrations of salt ions in the plant and more resistant to osmotic stress caused by saline soil.

Nguyen Viet Long, who hopes to obtain his doctorate at Wageningen University (part of Wageningen UR) on 2 November 2012, has found two sequence regions in the chromosomes of barley that contain the genes for these two properties.

The section comprising resistance to osmotic stress in particular is receiving a great deal of international attention from scientists working on salt tolerance. Nguyen is hoping that barley varieties which can be cultivated in saline soils will reach the market within around five years, thanks in part to his results.

Salinisation of agricultural land is a global problem. An area two hundred times the size of the Netherlands has already become too saline to use for food production. One fifth of this represents some of the best irrigated farmlands in the world. And climate change is aggravating the problem even further.

This is why researchers and plant breeders around the world are looking for opportunities to develop salt-tolerant crops for arable farming and horticulture. Of course this mostly focuses on the major food crops such as grains and potatoes. The Vietnamese PhD student Nguyen examined the possibility of adapting barley to saline conditions. Since barley is a grain, many of the results of this research will be useful to scientists studying wheat or rice. Nguyen worked together with the Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Germany, which has a large collection of different varieties of barley.

Nguyen examined some two hundred different varieties, including barley types from the Middle East. This is the area where barley originated, which means that large genetic variation can be found there – and the greater the genetic variation of examined varieties, the higher the chance of finding genetic factors that can be used in plant breeding. Being able to investigate so many different types of barley enabled Nguyen to determine the positions of the important hereditary properties faster and more accurately. In his research, Nguyen studied the growth of barley plants in high salt conditions.

He looked at a number of plant characteristics that are important for salt tolerance such as delayed yellowing of leaves, number of shoots and ion content in the leaves. By linking these observations to DNA analysis, he found two positions in the barley genome that affect the plant’s resistance to salt.

One of the two areas, on chromosome 4, affects how the plant deals with increased concentrations of salt ions such as Na+ and Cl-. The plant uses a kind of ‘ion pump’ to prevent these elevated i

on concentrations from reaching the leaves. This allows the photosynthesis in the leaves to continue as normal, permitting the plant to continue growing and producing seeds. The discovery of a similar mechanism in wheat was in the news quite recently.

The second area identified by Nguyen, on chromosome 6, contains one or more genes that make barley plants less sensitive to osmotic stress, which is the result of the high concentration of ions in saline soil. In this situation, plants absorb water less easily, which directly affects growth of the plants. This discovery is a real breakthrough, and has led to considerable international interest.

The precise genes responsible for salt tolerance in barley will probably be identified soon.

“Examining the genetic makeup and salt tolerance of so many different types of barley enabled me to map the interesting areas quickly and accurately,” Nguyen explains. “I am therefore hopeful that we will have barley varieties that can be grown on saline soils within around five years “ This research was funded by Wageningen UR Plant Breeding and the Vietnamese Ministry of Education.

Note for the editors

Further information: Erik Toussaint + 31 6 51 56 59 49, erik.toussaint@wur.nl Wageningen University is part of the international expertise organisation Wageningen UR (University & Research centre). Our mission is ‘To explore the potential of nature to improve the quality of life’.

Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University and Van Hall Larenstein University of Applied Sciences to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Erik Toussaint | Wageningen University
Further information:
http://www.wur.nl

Further reports about: Applied Science Wageningen food crop genetic variation salt tolerance

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>