Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening to Chickens Could Improve Poultry Production

18.05.2012
Chickens can’t speak, but they can definitely make themselves heard. Most people who have visited a poultry farm will recall chicken vocalization – the technical term for clucking and squawking – as a memorable part of the experience.

Researchers now believe that such avian expressiveness may be more than idle chatter. A collaborative project being conducted by the Georgia Institute of Technology and the University of Georgia is investigating whether the birds’ volubility can provide clues to how healthy and comfortable they are.

And that could be valuable information. Economically, chickens rule the roost in Georgia, where poultry is the top agricultural product with an estimated annual impact of nearly $20 billion statewide. There is industry concern about the welfare of the animals they raise; anything that helps growers reap a maximum return on every flock – while maintaining an environment conducive to their well-being – can translate to important dividends for the state’s economy.

“Many poultry professionals swear they can walk into a grow-out house and tell whether a flock is happy or stressed just by listening to the birds vocalize,” said Wayne Daley, a Georgia Tech Research Institute (GTRI) principal research scientist who is leading the research. “The trouble is, it has proved hard for these pros to pinpoint for us exactly what it is that they're hearing.”

Nevertheless, scientists are convinced that poultry farmers are detecting something real. Recent research at the University of Connecticut’s Department of Animal Science indicates that it is indeed possible to differentiate how the birds react to various conditions based on their vocalizations.

“The behavior of chickens is one of the best and most immediate indicators of their well-being,” said Bruce Webster, a University of Georgia poultry science professor who is working on the project. “Chickens are vocal creatures and produce different types of vocalizations at different rates and loudness depending on their circumstances.”

So the Georgia Tech/University of Georgia team is working to identify and extract specific vocalization features that will bear out both the anecdotal observations and the previous scientific work. The researchers are performing stress-related experiments on small flocks, recording the birds’ reactions on audio and video and analyzing the results.

GTRI is providing expertise in control-systems development and image processing, while Georgia Tech’s School of Electrical and Computer Engineering is contributing audio signal-processing technology and the University of Georgia is providing research facilities as well as guidance in experimental design as they relate to animal behavior and welfare issues.

“If what experienced farmers hear and sense can be defined and quantified, sensors to detect cues from the birds themselves could really make a difference in providing real-time information on house environment, bird health, and comfort,” said Michael Lacy, head of the Department of Poultry Science at the University of Georgia.

The work is funded by the Agricultural Technology Research Program, a state-supported effort to benefit the poultry and food-processing industries.

Naturally, said Daley, the poultry industry already has well-established guidelines covering optimal temperature, air quality and stocking density. Nevertheless, costly problems can still crop up – control systems can malfunction, or presumably ideal levels can turn out to be problematic.

“That’s where being able to judge the flock’s behavior can be so important,” Daley said. “Your temperature sensors might say that things are fine, but the birds could be telling you that they think it's a bit too warm or other changes have occurred to make the conditions less than ideal.”

From a poultry professional’s viewpoint, the flock’s opinion is probably the definitive one. Chickens take only six weeks to go from hatching to finished weight; stressful conditions can retard their growth, reducing their value when they go to market.

“Contract poultry producers are paid by the pound of birds sent to market. Improving the overall health and productivity of the birds will help to improve the bottom line for individual producers,” said Casey Ritz, a University of Georgia associate professor of poultry science who is involved in the research.

The research team has conducted several experiments in which they have exposed flocks to mildly stressful environmental changes. For example, temperature or ammonia levels might be increased from their initial settings for a few hours, then returned to the original level.

The researchers have recorded the flocks’ vocal reactions to the experiments, with video also collected in many instances. To date, more than four terabytes of bird-vocalization audio has been gathered.

Almost at once, the researchers encountered a knotty problem as they recorded bird sounds. They discovered that the large fans necessary for air circulation in a grow-out house can be considerably louder than the chickens, making it difficult to capture bird vocalizations effectively.

David Anderson, a professor in the Georgia Tech School of Electrical and Computer Engineering, has been working on the best methods for harvesting useable bird sounds from the noisy environment. It’s a classic audio signal-processing problem, he said, in which the signal of interest must separated from the noise that surrounds it.

“We have several approaches for extracting poultry voicing from the others noises, and we've been pretty successful in achieving that,” he said. “What makes this different from most other bird-song research is that we're not listening to individuals, we’re listening to sounds in the aggregate. It’s like trying to understand what people are saying in a restaurant, when all you hear are the murmurings of a hundred diners.”

To decode mass poultry vocalizing, Anderson is extracting particular features of the sound, such as speed, volume, pitch and other qualities. Then he’s utilizing machine learning – in which computers recognize complex patterns in data and make decisions based on those patterns – to analyze the extracted features and determine which characteristics may convey specific meanings.

“These are initial experiments, and we're going to have to test under a variety of conditions, but we’ve had considerable success already,” Anderson said. “By listening to the flock we can accurately tell when the birds are experiencing particular kinds of stress, such as significant temperature changes.”

In addition to ensuring high yield flocks, bird-vocalization analysis could save poultry growers money in equipment costs as well, Anderson suggested. For instance, he said, currently available ammonia sensors are both expensive and short-lived. If a system consisting of a few microphones and the right computer algorithms could take over ammonia-detection tasks, it would help reduce costs for the entire industry.

To date, video of the flocks hasn’t produced results as useful as the sound recordings, said GTRI’s Daley. But image processing of flock-reaction video continues, and could yield significant data down the road.

“This multi-disciplinary, multi-institution project highlights the different skills necessary to tackle current problems,” Daley said. “This approach will be valuable in years to come as we tackle a variety of problems to help the industry continue to be profitable and sustainable.”

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Assistance: John Toon (404-894-6986)(jtoon@gatech.edu); Abby Robinson (404-385-3364)(abby@innovate.gatechj.edu) or Kirk Englehardt (404-894-6015)(kirk.englehardt@comm.gatech.edu).

Writer: Rick Robinson

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>