Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landfill Cover Soil Methane Oxidation Underestimated

28.04.2009
A literature review reveals that landfill cover soils oxidize more methane than guidelines suggest.

Landfilled waste decomposes in the absence of oxygen and results in the production of methane. Landfills are classified as the second-largest human-made source of CH4 in the U.S. Additionally, landfill gas contains numerous non-methane hydrocarbons that are either volatilized directly from waste materials or produced through biochemical reactions during waste degradation.

Microbial methane oxidation reduces the emissions of methane and other volatile hydrocarbons from landfills. Determining the importance of this process is one of the major uncertainties in estimating national or global CH4 emissions from landfills. Landfill gas that is not collected passes through landfill cover soils on the way to being released to the environment. Bacteria in the soil consume methane and other volatile hydrocarbons that are produced by decomposition in the underlying waste by reacting it with oxygen.

A value of 0 to 10% oxidation has been recommended by the Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. Currently, for regulatory purposes the USEPA has recommended a default value for landfill cover CH4 oxidation of 10% due to the uncertainty involved and the lack of a standard method to determine oxidation rate.

Drs. Jeffrey Chanton, David Powelson, and Roger Green of Florida State University and Waste Management Inc. reviewed and compiled literature results from 42 determinations of the fraction of methane oxidized and 30 determinations of methane oxidation rate in a variety of soil types and landfill covers. The results were published in the March-April issue of the Journal of Environmental Quality. The means for the fraction of methane oxidized upon transit across the differing types of soil covers ranged from 22% in clayey soil to 55% in sandy soil. The overall mean fraction oxidized across all studies was 36% with a standard error of 6%. For a subset of fifteen studies conducted over an annual cycle the fraction of methane oxidized ranged from 11 to 89% with a mean value of 35 ± 6%, a value that was nearly identical to the overall mean.

The literature summarized in this paper indicates that the fraction of methane oxidized in landfill cover soils is considerably greater than the default value of 10%. Of the 42 determinations of methane oxidation only four reported values of 10% or less. One reported a value of 10%. This particular study was the first to report a well constrained value for the fraction of methane oxidized in a specific landfill, and because of this, it has received undue weight in the determination of regulations. The default value of 10% should be updated based upon technological advancements in soil engineering and state-of-the-practice applications in cover design as well as recent studies detailed journals such as Journal of Environmental Quality.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/2/654.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>