Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key discovered to cold tolerance in corn

02.09.2008
Demand for corn -- the world's number one feed grain and a staple food for many -- is outstripping supply, resulting in large price increases that are forecast to continue over the next several years.

If corn's intolerance of low temperatures could be overcome, then the length of the growing season, and yield, could be increased at present sites of cultivation and its range extended into colder regions.

Drs. Dafu Wang, Archie Portis, Steve Moose, and Steve Long in the Department of Crop Sciences and the Institute of Genomic Biology at the University of Illinois may have made a breakthrough on this front, as reported in the September issue of the journal Plant Physiology.

Plants can be divided into two groups based on their strategy for harvesting light energy: C4 and C3. The C4 groups include many of the most agriculturally productive plants known, such as corn, sorghum, and sugar cane. All other major crops, including wheat and rice, are C3. C4 plants differ from C3 by the addition of four extra chemical steps, making these plants more efficient in converting sunlight energy into plant matter.

Until recently, the higher productivity achieved by C4 species was thought to be possible only in warm environments. So while wheat, a C3 plant, may be grown into northern Sweden and Alberta, the C4 grain corn cannot. Even within the Corn Belt and despite record yields, corn cannot be planted much before early May and as such is unable to utilize the high sunlight of spring.

Recently a wild C4 grass related to corn, Miscanthus x giganteus, has been found to be exceptionally productive in cold climates. The Illinois researchers set about trying to discover the basis of this difference, focusing on the four extra chemical reactions that separate C4 from C3 plants.

Each of these reactions is catalyzed by a protein or enzyme. The enzyme for one of these steps, Pyruvate Phosphate Dikinase, or PPDK for short, is made up of two parts. At low temperature these parts have been observed to fall apart, differing from the other three C4 specific enzymes. The researchers examined the DNA sequence of the gene coding for this enzyme in both plants, but could find no difference, nor could they see any difference in the behavior of the enzyme in the test tube. However, they noticed that when leaves of corn were placed in the cold, PPDK slowly disappeared in parallel with the decline in the ability of the leaf to take up carbon dioxide in photosynthesis. When Miscanthus leaves were placed in the cold, they made more PPDK and as they did so, the leaf became able to maintain photosynthesis in the cold conditions. Why?

The researchers cloned the gene for PPDK from both corn and Miscanthus into a bacterium, enabling the isolation of large quantities of this enzyme. The researchers discovered that as the enzyme was concentrated, it became resistant to the cold, thus the difference between the two plants was not the structure of the protein components but rather the amount of protein present.

The findings suggest that modifying corn to synthesize more PPDK during cold weather could allow corn, like Miscanthus, to be cultivated in colder climates and be productive for more months of the year in its current locations. The same approach might even be used with sugar cane, which may be crossed with Miscanthus, making improvement of cold-tolerance by breeding a possibility.

Steve Long | EurekAlert!
Further information:
http://www.uiuc.edu
http://www.aspb.org/

Further reports about: Corn Pyruvate Phosphate Dikinase crop sciences cultivation

More articles from Agricultural and Forestry Science:

nachricht Are cover crops negatively impacting row crops?
30.07.2020 | American Society of Agronomy

nachricht Space to grow, or grow in space -- how vertical farms could be ready to take-off
14.07.2020 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>