Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key discovered to cold tolerance in corn

02.09.2008
Demand for corn -- the world's number one feed grain and a staple food for many -- is outstripping supply, resulting in large price increases that are forecast to continue over the next several years.

If corn's intolerance of low temperatures could be overcome, then the length of the growing season, and yield, could be increased at present sites of cultivation and its range extended into colder regions.

Drs. Dafu Wang, Archie Portis, Steve Moose, and Steve Long in the Department of Crop Sciences and the Institute of Genomic Biology at the University of Illinois may have made a breakthrough on this front, as reported in the September issue of the journal Plant Physiology.

Plants can be divided into two groups based on their strategy for harvesting light energy: C4 and C3. The C4 groups include many of the most agriculturally productive plants known, such as corn, sorghum, and sugar cane. All other major crops, including wheat and rice, are C3. C4 plants differ from C3 by the addition of four extra chemical steps, making these plants more efficient in converting sunlight energy into plant matter.

Until recently, the higher productivity achieved by C4 species was thought to be possible only in warm environments. So while wheat, a C3 plant, may be grown into northern Sweden and Alberta, the C4 grain corn cannot. Even within the Corn Belt and despite record yields, corn cannot be planted much before early May and as such is unable to utilize the high sunlight of spring.

Recently a wild C4 grass related to corn, Miscanthus x giganteus, has been found to be exceptionally productive in cold climates. The Illinois researchers set about trying to discover the basis of this difference, focusing on the four extra chemical reactions that separate C4 from C3 plants.

Each of these reactions is catalyzed by a protein or enzyme. The enzyme for one of these steps, Pyruvate Phosphate Dikinase, or PPDK for short, is made up of two parts. At low temperature these parts have been observed to fall apart, differing from the other three C4 specific enzymes. The researchers examined the DNA sequence of the gene coding for this enzyme in both plants, but could find no difference, nor could they see any difference in the behavior of the enzyme in the test tube. However, they noticed that when leaves of corn were placed in the cold, PPDK slowly disappeared in parallel with the decline in the ability of the leaf to take up carbon dioxide in photosynthesis. When Miscanthus leaves were placed in the cold, they made more PPDK and as they did so, the leaf became able to maintain photosynthesis in the cold conditions. Why?

The researchers cloned the gene for PPDK from both corn and Miscanthus into a bacterium, enabling the isolation of large quantities of this enzyme. The researchers discovered that as the enzyme was concentrated, it became resistant to the cold, thus the difference between the two plants was not the structure of the protein components but rather the amount of protein present.

The findings suggest that modifying corn to synthesize more PPDK during cold weather could allow corn, like Miscanthus, to be cultivated in colder climates and be productive for more months of the year in its current locations. The same approach might even be used with sugar cane, which may be crossed with Miscanthus, making improvement of cold-tolerance by breeding a possibility.

Steve Long | EurekAlert!
Further information:
http://www.uiuc.edu
http://www.aspb.org/

Further reports about: Corn Pyruvate Phosphate Dikinase crop sciences cultivation

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>