Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive Papaya Pest Discovered in Asia

10.10.2008
Papaya is a multimillion dollar crop in Indonesia, India, countries in the Caribbean and South America, the Hawaiian Islands, and Florida. The first reported occurrences of papaya mealybug in Indonesia and Southeast Asia were in May and then in July. Scientists are using integrated pest management to contain the pest.

Thanks to efforts by scientists in a Virginia Tech-led program, the papaya mealybug — an emerging threat from India to Indonesia — is being identified and contained.

Attacks by the papaya mealybug are a serious threat. In Indonesia, India, countries in the Caribbean and South America, the Hawaiian Islands, and Florida, papaya means millions of dollars for farmers, middlemen, and processors. In West Java, the scourge has wiped out most of the papaya plantations.

In May, 2008, a team from the Integrated Pest Management Collaborative Research Support Program (IPM CRSP), managed by Virginia Tech’s Office of International Research, Education, and Development, identified papaya mealybug on papaya trees at the Bogor Botanical Gardens in West Java, Indonesia.

It was the first reported occurrence of papaya mealybug in Indonesia and Southeast Asia.

A specialist in mealybug taxonomy at the California Department of Agriculture confirmed the identification as papaya mealybug — an unarmored scale insect found in moist, warm climates.

Two months later, on a trip to Tamil Nadu Agricultural University in Coimbatore, India, Muni Muniappan, director of the IPM CRSP at Virginia Tech, recognized the telltale sticky residue on papayas he saw there as papaya mealybug.

In each case, IPM scientists alerted government authorities and advised them on appropriate actions to take. These discoveries are crucial; the sooner authorities can arrest the spread of the papaya mealybug, the better their chances of saving this lucrative tropical crop.

While papaya is an exotic fruit in the northern hemisphere, papain, a product of papaya, is used in a variety of ways every day, including the production of chewing gum, shampoo, and toothpaste and tooth whiteners; as a meat tenderizer; and in the brewing and textile industries. In many tropical countries, papaya is an important commercial crop and a key component of the daily diet.

The papaya mealybug originated in Mexico, where it developed alongside natural enemies and was first identified in 1992. It wasn’t until it jumped countries and started proliferating in places where it had no natural enemies that it began to pose problems. In 1995, it was discovered on the Caribbean island of St. Martin. By the year 2000, it had spread to 13 countries in the Caribbean, to Florida in the United States, and to three countries each in Central and South America.

The papaya mealybug is a particularly devastating pest because it is polyphagous—it feeds on many things. The insect’s host range includes more than 60 species of plants: cassava, papaya, beans, eggplant, melons, hisbiscus, plumeria, pepper, sweet potato, tomato, citrus, mango, and sour sop.

On papaya plants, the mealybug infests all parts of the young leaves and fruits, mostly along the veins and midrib of the older leaves. Young leaves become crinkly and older leaves turn yellow and dry up. Terminal shoots become bunchy and distorted. Affected trees drop flowers and fruits. To add insult to injury, the mealybug secretes a honeydew-like substance that turns into a thick sooty mold growth, making the fruit inedible and unusable for the production of papain.

The good news is that the U.S. Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) has developed a biological control program to tackle the pest. Biological control is an integrated pest management tactic that pits natural enemies against pests. APHIS has identified three parasitoids including parasitic wasps that are highly effective at containing the mealybug. These natural enemies are being cultured in a laboratory in Puerto Rico and are offered free to countries that request them.

The IPM CRSP, funded by the U.S. Agency for International Development, is a consortium of integrated pest management scientists working to raise the standard of living in developing countries. The IPM CRSP team that traveled to Indonesia included Robert Hedlund, Cognizant Technical Officer for the USAID-funded program; Muniappan; Clemson University entomology Professors Merle Shepard and Gerry Carner; Clemson economics Professor Mike Hammig; Yulu Xia, assistant director of the NSF Center for IPM at North Carolina State; and Aunu Rauf, professor of entomology at Bogor Agricultural University in Indonesia.

While the challenge of reclaiming the papaya plantations from the papaya mealybug seems daunting, Muniappan is optimistic. “The use of parasitoids has been very effective in Caribbean and Latin American countries, and in Florida, Guam, and Palau,” he said. “But we need to be vigilant.”

Miriam Rich | Newswise Science News
Further information:
http://www.vt.edu
http://www.oired.vt.edu/ipmcrsp

Further reports about: Agricultural Papaya Pest Pest crop papaya papaya mealybug papaya plantations

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>