Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving Soil for Better Lawns and Gardens

10.11.2010
U.S. Department of Agriculture (USDA) scientists in West Virginia are finding ways to improve soil on degraded land so it can be used for sports fields and other uses.

Researchers with USDA's Agricultural Research Service (ARS) at the agency's Appalachian Farming Systems Research Center (AFSRC) in Beaver, W.Va., are developing constructed or replacement subsoils and topsoils to build better and less-costly sports fields, raingardens and lawns on former landfills, mine lands and other degraded land. ARS is USDA's principal intramural scientific research agency.

The constructed soil research project is in its fourth year. ARS is conducting the research in cooperation with the National Turfgrass Research Initiative, Inc., a joint turfgrass industry-ARS program created in 2007. The initiative draws on the expertise of scientists with ARS and at universities, according to lead scientist Rich Zobel at AFSRC.

The turfgrass industry has set a high priority on improving degraded soils by constructing soils that include readily available rural, urban and industrial byproducts that can be mixed with local soils. These byproduct mixes are being tailored to not only reduce rain runoff and erosion, but also to remove or neutralize pollutants before they reach storm drains.

With lower costs through using inexpensive local byproducts, schools and local parks have a better chance of being able to afford soil replacement for better turfgrass survival. Eliminating compacted soil is the first step toward growing good, robust grass.

The most promising mixture so far includes quarry byproducts and composted chicken litter. It has met predetermined requirements such as the ability to transmit stormwater.

Zobel and his colleagues develop recipes for constructing designer soils from various materials in Ohio, Kentucky, Tennessee, West Virginia, Virginia and southern Pennsylvania.

For the future, Zobel envisions new turfgrass varieties, possibly perennial ryegrass and tall fescue, that will penetrate compacted soil and renovate fields without the need to tear up fields and till compacted soil.

Read more about this research in the November/December 2010 issue of Agricultural Research magazine, available online at: http://www.ars.usda.gov/is/AR/archive/nov10/gardens1110.htm.

Findings from this research have been published in the Journal of Soil Science and Environmental Management and in USGA Turfgrass and Environmental Research Online.

Don Comis | EurekAlert!
Further information:
http://www.ars.usda.gov
http://www.ars.usda.gov/is/pr/2010/101109.htm

Further reports about: AFSRC ARS Agricultural Research Soil environmental risk turfgrass turfgrass industry

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>