Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Cereals for Increased Crop Yields

20.06.2011
University of Adelaide computer scientists are developing image-based technology which promises a major boost to the breeding of improved cereal varieties for the harsher environmental conditions expected under climate change.

Led by Professor Anton van den Hengel, Director of the Australian Centre for Visual Technologies (ACVT), the computer scientists are joining with plant physiologists and an industry partner to develop technology that will be able to accurately estimate plant yield of potential new cereal varieties well before grain production.

They will use multiple images of plants as they grow to construct computerised 3-D models that will match the plants’ changing “shape” with its biological properties and, ultimately, predict yield.

"We are using image analysis to understand the shape of plants so that we can automatically and rapidly measure plant structural properties and how they change over time," said Professor van den Hengel.

"We want to be able to predict yield based on a collection of measurable plant attributes early in the plant’s lifespan, rather than having to wait for the plant to mature and then measuring the yield."

Professor van den Hengel said this image-based approach would enable detailed, accurate and rapid estimation of large numbers of plants’ potential yields under various growing conditions, for example high salinity or drought.

"This novel image analysis technology promises to transform crop breeding and, as a result, the agricultural industry," he said.

"By expediting the development of plant varieties capable of delivering increased yield under harsh environmental conditions this project will help improve Australia’s agricultural efficiency and competitiveness. It will help Australian agriculture prepare for the impact of climate change and the need to produce more food for a growing population."

The image-based analysis will be incorporated into the Plant Accelerator at the University’s Waite Campus. Opened last year, the Plant Accelerator houses more than 1km of conveyor systems that deliver plants automatically to the imaging and other stations.

The project, 'Improving yield through image-based structural analysis of cereals', has been funded under the latest round of Australian Research Council Linkage Projects.

Other chief investigators for the project are Professor Mark Tester, Professor of Plant Physiology in the School of Agriculture, Food and Wine and Director of the Plant Accelerator, and Dr Anthony Dick, Deputy Director of the ACVT. The ACVT is a University of Adelaide research centre housed within the School of Computer Science.

The project involves industry partner LemnaTec, which provided some of the equipment used in the Plant Accelerator. They will help commercialise the technology.

Media Contact:
Professor Anton van den Hengel
Director, Australian Centre for Visual Technologies
School of Computer Science
The University of Adelaide
Phone: +61 8 8303 5309
Mobile: +61 414 268 662
anton.vandenhengel@adelaide.edu.au
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8303 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>