Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017

According to a new study, almost 36 billion tons of soil is lost every year due to water, and deforestation and other changes in land use make the problem worse.

According to a new study by the University of Basel, the European Commission - Joint Research Centre and the Centre for Ecology & Hydrology (CEH, UK), almost 36 billion tons of soil is lost every year due to water, and deforestation and other changes in land use make the problem worse. The study also offers ideas on how agriculture can change to become a part of the solution from being part of the problem


The spatial pattern of soil erosion in 2012. Areas classified as having very low, and low erosion rates represent almost 85 percent of the study area. About 7.5 million km2 in total (6.1 percent of the land), exceeds the generic tolerable soil erosion threshold

Credit: European Union, University of Basel

Healthy soil - healthy planet and people

Soil is an essential resource for satisfying human needs, such as food and feed production, fibre, clean air and water. Soil is not an infinite resource though. Human activity and changes in land use lead to increased soil loss, which in turn degrades nature's recycling system and diminishes land productivity, thus decreasing human wellbeing worldwide.

The most detailed mapping of soil erosion ever

The research findings, "An assessment of the global impact of 21st century land use change on soil erosion", offer an unprecedentedly thorough, high resolution assessment of global soil loss.

The study quantifies the effects of land use change between 2001 and 2012 and finds that during this period, 35.9 billion tonnes of soil had been displaced due to water (mostly rainfall) annually. This is the equivalent of the weight of the concrete that it would take to build 250 of the world's largest dam, the Three Gorges Dam in China. Soil loss increased by 2.5% between 2000 and 2012 mainly due to clearing down forests for agricultural purposes.

Soil erosion hotspots

Soil erosion doesn't strike evenly. Moderate to high soil erosion impacts about 9.3% of Earth's land surface, and it exceeds the generic tolerable soil erosion threshold for 6.1% of the land surface, or about 7.5 million km2.

The greatest increase in soil loss is estimated for Sub-Saharan Africa, South America and Southeast Asia. This means that countries with less developed economies are estimated to have experienced the highest soil erosion rates.

South America surpasses Africa with an estimated increase of soil erosion of over 10% in 2012. This seems to be driven mostly by deforestation and the large expansion of cropland areas in Argentina (41.6% of its territory dedicated to cropland), Brazil (19.8%), Bolivia (37.8%) and Peru (5.9%). During the same period, soil erosion in Africa increased by 8%, mostly in the Equatorial countries.

The largest and most intensively eroded regions are in China (0.47 million km2, 6.3% of the country's land area), Brazil (0.32 million km2 or 4.6% the country's land area) and African Equatorial territories (0.26 million km2, 3.2% of the region).

Conservation agriculture saves soil

Soil erosion can be reduced if soil conservation practices are adopted in agriculture. The study estimates that, if applied correctly, conservation practices could save over a billion tonnes of soil per year. Conservation agriculture currently covers about 15.3% of the observed cropland globally, reducing soil erosion by an estimated 7%. The highest reductions in soil loss due to conservation agriculture are estimated in South America (16%), Oceania (15.4%) and North America (12.5%).

Unique methodology combining space imagining with rainfall data

The study investigates global soil erosion dynamics by means of high-resolution spatially distributed modelling (ca. 250?×?250?m cell size). The geo-statistical approach allows, for the first time, the thorough incorporation into a global soil erosion model of land use and changes in land use, the extent, types, spatial distribution of global croplands and the effects of different regional cropping systems. This, coupled with an improved global assessment of rainfall erosivity dynamics and the latest globally consistent dataset resulted in a state-of-the-art global model based on the Revised Universal Soil Loss Equation or RUSLE.

###

The study was produced by a group of researchers, led by the University of Basel, the European Commission - Joint Research Centre and the Centre for Ecology & Hydrology (CEH, UK).

Barbara Piotrowska | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>