Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How LED lighting treatments affect greenhouse tomato quality

22.12.2015

LEDs show potential as cost-saving alternative to overhead high-pressure sodium lamps

To satisfy increasing consumer demand for locally grown, fresh tomatoes during off-seasons, greenhouse tomato growers often need to rely on supplemental lighting.


Tomato plants received supplemental lighting from high-pressure sodium lamps or from intracanopy (IC) LED towers. Results showed that tomato quality was largely unaffected by the type of light treatment.

Photo courtesy of Michael Dzakovich

Tomato growers are looking to light-emitting diodes (LEDs), favored for their energy-saving potential, as an alternative to high-pressure sodium lamps (HPS) in greenhouse operations. A recent study offers new information about the feasibility of using LEDs in greenhouse tomato operations.

Michael Dzakovich, Celina Gómez, and Cary Mitchell from the Department of Horticulture and Landscape Architecture at Purdue University published the study of supplemental lighting experiments in HortScience (October 2015). They noted that light-emitting diodes are becoming a viable alternative to high-pressure sodium supplementation.

"There is great interest in (LEDs) potential to influence the phytochemical and flavor profile of various high-value crops," the authors said. "However, little fruit quality-attribute work with LEDs has been done on a long-duration, full grow-out of tomatoes."

The researchers conducted three separate studies to investigate the effect of supplemental light quantity and quality on greenhouse-grown tomatoes. Plants were grown either with natural solar radiation only (the control), natural solar radiation plus supplemental lighting from high-pressure sodium lamps, or natural solar radiation plus supplemental light from intracanopy (IC) LED towers.

The scientists analyzed plant responses by collecting chromacity, Brix, titratable acidity, electrical conductivity, and pH measurements. "Contrary to our hypothesis, fruit quality was largely unaffected by direct, IC supplemental lighting," the authors said.

The study also included sensory panels in which tasters ranked tomatoes for color, acidity, and sweetness using an objective scale. The tasters were also asked to rank tomato color, aroma, texture, sweetness, acidity, aftertaste, and overall approval using a five-point hedonic (preference) scale.

"By collecting both physicochemical and sensory data, we were able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality," the authors said. The sensory panels indicated that physicochemical differences were not noticeable to tasters; in fact, the tasters on the testing panels could not discern between tomatoes from different supplemental lighting treatments or those from the unsupplemented controls.

"This study demonstrated that greenhouse tomato fruit quality was unaffected by both the type of supplemental lighting as well as supplemental lighting per se," the scientists said. "Physicochemical measurements indicated only slight variation among fruits grown under different lighting regimes, and these findings were supported by nonsignificant differences in sensory attributes."

The authors said the results are promising for tomato growers interested in reducing energy consumption in greenhouses. "Supplemental IC-LED lighting at the intensities and wavelengths used in this study did not negatively affect greenhouse tomato fruit quality and demonstrates a potential alternative for overhead high-pressure sodium supplementation," they said.

###

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/50/10/1498.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>