Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How algae could save plants from themselves

11.05.2016

Protein discovery is important first step in harnessing the power of green algae for agriculture

Algae may hold the key to feeding the world's burgeoning population. Don't worry; no one is going to make you eat them. But because they are more efficient than most plants at taking in carbon dioxide from the air, algae could transform agriculture. If their efficiency could be transferred to crops, we could grow more food in less time using less water and less nitrogen fertilizer.


The algal pyrenoid could be the key to increasing crop yields. A pyrenoid (blue) is seen in a cross-section of an algal cell by false-colored electron microscopy. The pyrenoid sits inside the chloroplast (green), which harvests light energy to drive carbon fixation. Image is courtesy of Moritz Meyer.

Credit: Moritz Meyer

New work from a team led by Carnegie's Martin Jonikas published in Proceedings of the National Academy of Sciences reveals a protein that is necessary for green algae to achieve such remarkable efficiency. The discovery of this protein is an important first step in harnessing the power of green algae for agriculture.

It all starts with the world's most abundant enzyme, Rubisco.

Rubisco "fixes" (or converts) atmospheric carbon dioxide into carbon-based sugars, such as glucose and sucrose, in all photosynthetic organisms on the planet. This reaction is central to life on Earth as we know it, because nearly all the carbon that makes up living organisms was at some point "fixed" from the atmosphere by this enzyme. The rate of this reaction limits the growth rate of many of our crops, and many scientists think that accelerating this reaction would increase crop yields.

The funny thing about Rubisco is that it first evolved in bacteria about 3 billion years ago, a time when the Earth's atmosphere had more abundant carbon dioxide compared to today. As photosynthetic bacteria became more and more populous on ancient Earth, they changed our atmosphere's composition.

"Rubisco functioned very efficiently in the ancient Earth's carbon dioxide-rich environment," Jonikas said. "But it eventually sucked most of the CO2 out of the atmosphere, to the point where CO2 is a trace gas today."

Rubisco is quite literally a victim of its own success. CO2 makes up only about 0.04 percent of molecules in today's atmosphere. In this low concentration of CO2, Rubisco works extremely slowly, which limits the growth rates of many crops.

It turns out that algae have evolved a way to make Rubisco run faster. It's called the pyrenoid. Think of it as a turbocharger for carbon fixation.

The pyrenoid is a tiny compartment inside the cell that is packed with Rubisco and is surrounded by a sheath of starch. Under a microscope, a pyrenoid looks like a spherical bubble inside the cell. Its job is to concentrate carbon dioxide around Rubisco so that Rubisco can run faster.

A pyrenoid provides such a tremendous growth advantage that nearly all algae in the oceans have one. About a third of the planet's carbon fixation is thought to happen in pyrenoids, yet we know almost nothing about how these structures are formed at a molecular level. Such a molecular understanding is needed before researchers can attempt to engineer pyrenoids into crops, which is expected to enhance crop yields by as much as 60 percent.

The research team focused on a fundamental decades-old mystery: what causes Rubisco to cluster at the core of the pyrenoid?

Jonikas and his team discovered that in their model alga Chlamydomonas, this clustering of Rubisco is mediated by a protein they called EPYC1 for Essential Pyrenoid Component 1. They found that EPYC1 bound with Rubisco and packaged it into the matrix of proteins that forms the pyrenoid's interior. What's more, proteins similar to EPYC1 are found in most pyrenoid-containing algae, and are not found in algae that lack these structures.

"A lot of additional work is needed to fully understand EPYC1 and pyrenoids, but our findings are a first step toward engineering algal carbon-capture efficiency into crops," Jonikas said.

###

The research team also included Carnegie's Luke Mackinder (the lead author), Vivian Chen, Elizabeth Freeman Rosenzweig, Leif Pallesen, Gregory Reeves, and Alan Itakura. The project was a close collaboration with Moritz Meyer, Madeline Mitchell, Oliver Caspari, and Howard Griffiths of the University of Cambridge; Tabea Mettler-Altmann, Frederik Sommer, Timo Mühlhaus, Michael Schroda and Mark Stitt of the Max Planck Institute of Molecular Plant Physiology; Robyn Roth and Ursula Goodenough of Washington University St. Louis; and Stefan Geimer of University of Bayreuth.

This work was funded by the National Science Foundation, the Carnegie Institution for Science, the National Institutes of Health, the Biotechnology and Biological Research Council, and the Federal Ministry of Education and Research in Germany within the framework of the GoFORSYS Research Unit for Systems Biology and the International Max Planck Research School of the Max Planck Society.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Martin Jonikas | EurekAlert!

Further reports about: Atmosphere CO2 carbon dioxide carbon fixation crop yields crops dioxide enzyme green algae photosynthetic

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>