Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut Microbes Enable Coffee Pest to Withstand Extremely Toxic Concentrations of Caffeine

16.07.2015

Berkeley Lab and USDA research could lead to new ways to fight beetle that devastates coffee crops worldwide

The coffee berry borer is the most devastating coffee pest in the world. The tiny beetle is found in most regions where coffee is cultivated, and a big outbreak can slash crop yield by 80 percent.


Berkeley Lab

This colorful representation shows the dominant bacterial groups that live inside the guts of coffee berry borers from seven major coffee producing countries. The bar graph on the left shows the proportion of the most prevalent bacteria, Pseudomonas, in the gut microbiome of the collected beetles.

It’s also a caffeine fiend. The insect is the only coffee pest that uses the caffeine-rich bean as its sole source of food and shelter. It bores into the bean and spends most of its life tucked inside, where it’s exposed to what should be an extremely toxic amount of caffeine for its mass: the equivalent of a 150-pound person downing 500 shots of espresso. Caffeine is harmful to most insects and is believed to act as a natural pest repellant. So how does the coffee berry borer thrive in such a hostile environment?

It relies on the bacteria in its gut, according to new research by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the U.S. Department of Agriculture (USDA), and Mexico’s El Colegio de la Frontera Sur (ECOSUR). Their study appears July 14 in the journal Nature Communications.

The scientists discovered that coffee berry borers worldwide share 14 bacterial species in their digestive tracts that degrade and detoxify caffeine. They also found the most prevalent of these bacteria has a gene that helps break down caffeine. Their research sheds light on the ecology of the destructive bug and could lead to new ways to fight it.

“Instead of using pesticides, perhaps we could target the coffee berry borer’s gut microbiota. We could develop a way to disrupt the bacteria and make caffeine as toxic to this pest as it is to other insects,” says Javier Ceja-Navarro, a scientist in Berkeley Lab’s Earth Sciences Division and lead author of the paper.

Ceja-Navarro and Eoin Brodie of Berkeley Lab led the effort with the USDA’s Fernando Vega, an expert on the coffee berry borer and one of the study’s corresponding authors. Zhao Hao, Ulas Karaoz, Trent Northen, Stefan Jenkins, and Hsiao Chien-Lim of Berkeley Lab; Francisco Infante of ECOSUR; and Petr Kosina of Mexico’s International Maize and Wheat Improvement Center also contributed.

Scientists have extensively studied the beetle, but very little research has focused on how it subsists solely on coffee berries, and the Berkeley Lab and USDA-led team is the first to explore the role of the bacteria in its gut. The idea isn’t as far-fetched as it may seem. Microbes perform key functions in all ecosystems, from cycling nutrients in the soil to shaping the human immune system from inside our digestive tract.

The scientists analyzed coffee berry borers from seven coffee-producing regions: Mexico, Guatemala, Puerto Rico, Hawaii, India, Indonesia and Kenya. They also studied a colony reared at the USDA’s lab in Beltsville, Maryland. Ceja-Navarro removed the digestive tracts from hundreds of deceased beetles, a painstaking process requiring micro-tweezers and steady hands.

“Before this research, I worked with atomic force microscopy, where you have to keep your hands steady, so I got good at it,” says Ceja-Navarro. “But I had to cut down on coffee!”

The scientists immersed the gut bacteria in a special medium containing caffeine as the main nutrient, so only the bacteria that degrade caffeine survived. Fourteen bacterial species were isolated, most of which were found in beetles from all seven coffee-producing regions and the laboratory colony.

These bacteria appear to subsist on caffeine as their sole source of carbon and nitrogen. One of the bacteria, Pseudomonas fulva, was the most prevalent, according to their DNA-based geographic survey.

The scientists also screened the bacteria for a gene called ndmA that is known to transform caffeine. They found that only P. fulva possessed this gene. Ceja-Navarro surmises the other bacteria help break down caffeine using different genes.

To confirm the role of P. fulva in the degradation of caffeine, the researchers administered an antibiotic to a group of beetles that wiped out their gut microbiota. They then fed these beetles a standardized diet based on coffee beans and then analyzed their feces. The caffeine passed through their digestive tracts intact without a hint of degradation.

The scientists next added P. fulva to the beetles’ diet to restock their guts with the caffeine-degrading bacterium. The feces from these beetles were devoid of caffeine, indicating the detoxification process had been restored.

“After that, we knew gut bacteria were key to the beetle’s survival strategy and its ecology in general,” says Eoin Brodie, the study’s senior author. “This is a clear example of how microorganisms, with their rapid adaptive capabilities, can enable higher organisms to colonize new environments.”

The research was funded by the U.S. Department of Agriculture, the Laboratory Directed Research and Development program at Berkeley Lab, and Mexico’s National Council for Science and Technology.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov 

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Contact Information
Dan Krotz
Science Writer
DAKrotz@lbl.gov
Phone: 510-486-4019

Dan Krotz | newswise

Further reports about: Department bacterial species beetle caffeine coffee coffee berry borer ecology microbiota

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>