Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growstones ideal alternative to perlite, parboiled rice hulls

15.12.2011
Substrate made from waste glass performs well in greenhouse applications

In the greenhouse business, organic and inorganic growing substrates are chosen for the physical and chemical properties necessary to support specific crops and growing conditions. One important physical property in substrates is air-filled pore space, a particularly important characteristic that allows for gas exchange between plants' roots and the outside atmosphere.

Perlite and parboiled rice hulls are the two of the most common components used to increase air-filled pore space (AFP) in substrates. A study compared these popular components to Growstones, an aggregate produced from finely ground waste glass.

Although they are widely used in horticulture applications, both perlite and parboiled rice hulls have disadvantages and limitations. Perlite, a natural glass of volcanic origin that expands when quickly heated, has become increasingly expensive due to costs of mining, transportation, and production. In addition to its rising price tag, perlite produces a siliceous dust that is an eye and lung irritant. Parboiled rice hulls (PBH) are produced only in specific areas of the United States, making high shipping costs an issue for end-users. And, because it is a plant-based component, PBH may also have limitations with respect to its use in long-term crops because of softening and decomposition.

Michael R. Evans, Professor in the Department of Horticulture at the University of Arkansas, created experiments to compare perlite and PBH with Growstones. Evans' results were published in HortTechnology. According to Evans, aggregates such as Growstones (produced by Earthstone Corp., Santa Fe, NM) have been proposed as alternatives to perlite and PBH to adjust the physical properties of peat-based substrates.

Growstones, which have been successfully used as a hydroponic substrate, are produced from finely ground waste glass. The ground glass powder is combined with calcium carbonate and heated in a kiln. Carbon dioxide is produced as the glass particles are heated and fused together, trapping air spaces inside the glass. The result is an expanded, lightweight product that is cooled before being ground to the desired size.

Evans' experiments showed that Growstones had an AFP higher than that of both peat and perlite. Additionally, when added to peat at a concentration of at least 15%, Growstones increased the AFP of the resulting peat-based substrate.

"Growstones can be used in a similar manner to perlite and PBH as an aggregate to increase AFP of peat based substrates", Evans said. "The primary differences were that, at concentrations of 25% or more, GS resulted in a higher AFP than equivalent perlite-containing substrates. Also, substrates containing 20% or more GS had a higher water-holding capacity than equivalent perlite- and PBH-containing substrates, and GS-containing substrates had a higher bulk density than equivalent perlite- and PBH-containing substrates."

All GS-containing substrates had physical properties within recommended ranges. Vinca, impatiens, and geranium plugs grown in GS-containing substrates were comparable to plants grown in equivalent perlite- and PBH-containing substrates.

Evans said that the experiments showed that Growstones can be successfully used as a component for substrates used in greenhouse crop production.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/21/1/30

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>