Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growstones ideal alternative to perlite, parboiled rice hulls

15.12.2011
Substrate made from waste glass performs well in greenhouse applications

In the greenhouse business, organic and inorganic growing substrates are chosen for the physical and chemical properties necessary to support specific crops and growing conditions. One important physical property in substrates is air-filled pore space, a particularly important characteristic that allows for gas exchange between plants' roots and the outside atmosphere.

Perlite and parboiled rice hulls are the two of the most common components used to increase air-filled pore space (AFP) in substrates. A study compared these popular components to Growstones, an aggregate produced from finely ground waste glass.

Although they are widely used in horticulture applications, both perlite and parboiled rice hulls have disadvantages and limitations. Perlite, a natural glass of volcanic origin that expands when quickly heated, has become increasingly expensive due to costs of mining, transportation, and production. In addition to its rising price tag, perlite produces a siliceous dust that is an eye and lung irritant. Parboiled rice hulls (PBH) are produced only in specific areas of the United States, making high shipping costs an issue for end-users. And, because it is a plant-based component, PBH may also have limitations with respect to its use in long-term crops because of softening and decomposition.

Michael R. Evans, Professor in the Department of Horticulture at the University of Arkansas, created experiments to compare perlite and PBH with Growstones. Evans' results were published in HortTechnology. According to Evans, aggregates such as Growstones (produced by Earthstone Corp., Santa Fe, NM) have been proposed as alternatives to perlite and PBH to adjust the physical properties of peat-based substrates.

Growstones, which have been successfully used as a hydroponic substrate, are produced from finely ground waste glass. The ground glass powder is combined with calcium carbonate and heated in a kiln. Carbon dioxide is produced as the glass particles are heated and fused together, trapping air spaces inside the glass. The result is an expanded, lightweight product that is cooled before being ground to the desired size.

Evans' experiments showed that Growstones had an AFP higher than that of both peat and perlite. Additionally, when added to peat at a concentration of at least 15%, Growstones increased the AFP of the resulting peat-based substrate.

"Growstones can be used in a similar manner to perlite and PBH as an aggregate to increase AFP of peat based substrates", Evans said. "The primary differences were that, at concentrations of 25% or more, GS resulted in a higher AFP than equivalent perlite-containing substrates. Also, substrates containing 20% or more GS had a higher water-holding capacity than equivalent perlite- and PBH-containing substrates, and GS-containing substrates had a higher bulk density than equivalent perlite- and PBH-containing substrates."

All GS-containing substrates had physical properties within recommended ranges. Vinca, impatiens, and geranium plugs grown in GS-containing substrates were comparable to plants grown in equivalent perlite- and PBH-containing substrates.

Evans said that the experiments showed that Growstones can be successfully used as a component for substrates used in greenhouse crop production.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/21/1/30

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>