Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Camelina and Safflower in the Pacific Northwest

20.05.2014

A recent study published in Agronomy Journal provides information important to farmers growing oilseed crops.

In the study, camelina and safflower were grown in three-year rotations with winter wheat and summer fallow. The study shows that using this rotation may require that no tillage should be done to the soil during the fallow year.


Brenton Sharratt

The researcher’s wind tunnel “in action” during a test on a camelina plot. The tunnel can generate wind speeds of up to 40 mph. John Morse with the USDA-ARS in Pullman, WA is in the background measuring surface roughness.

Oilseed crops produce relatively little residue—organic material such as roots that hold the soil together. Even light tillage can disintegrate the soil.

A cooperative study by the USDA-ARS and Washington State University researched the effects of growing oilseed crops—camelina and safflower—on blowing dust emissions. The Columbia Plateau of the Inland Pacific Northwest experiences significant windblown dust from excessively-tilled agricultural lands.

Brenton Sharratt and William Schillinger found that adding camelina or safflower crops into a rotation with winter wheat and summer fallow increased the amount of dust at the end of tillage-based fallow or when wheat is planted. “Farmers will need to protect the soil from wind erosion during the fallow phase after harvest of oilseed crops,” says Sharratt.

The Pacific Northwest is a low-precipitation region. The typical crop rotation there is winter wheat-summer fallow. Thus, one crop is usually grown every other year.

The fallow period allows the soil to store moisture from rains and snows over the winter. This stored moisture is critical for seed germination and emergence of winter wheat.

The researchers measured dust particles, or wind erosion, using a portable wind tunnel. This tunnel was 24 ft long, 4 ft tall and 3 ft wide. A fan was used to generate conditions like those naturally occurring in the fields.

Their findings show that adding camelina or safflower into the crop rotation increased the chances of wind erosion late in the fallow cycle.

Thus, their caution to farmers is to use techniques to preserve the soil. “Even the undercutter method is too much tillage for fallow after oilseeds in the dry region,” say the researchers. “No-till fallow, or planting another crop without a fallow year, is the answer for controlling blowing dust.”

###

To see the full story, visit https://www.agronomy.org/story/2014/may/fri/growing-camelina-and-safflower-in-the-pacific-northwest. Access the full article at https://dl.sciencesocieties.org/publications/aj/abstracts/0/0/agronj13.0384

Susan Fisk | newswise

Further reports about: Access Agronomy CSSA Pacific Science Soil USDA-ARS crop crops moisture preserve safflower techniques

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>