Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundwater Depletion in Semiarid Regions of Texas and California Threatens U.S. Food Security

29.05.2012
The nation's food supply may be vulnerable to rapid groundwater depletion from irrigated agriculture, according to a new study by researchers at The University of Texas at Austin and elsewhere.

The study, which appears in the journal Proceedings of the National Academy of Sciences, paints the highest resolution picture yet of how groundwater depletion varies across space and time in California's Central Valley and the High Plains of the central U.S. Researchers hope this information will enable more sustainable use of water in these areas, although they think irrigated agriculture may be unsustainable in some parts.

"We're already seeing changes in both areas," said Bridget Scanlon, senior research scientist at The University of Texas at Austin's Bureau of Economic Geology and lead author of the study. "We're seeing decreases in rural populations in the High Plains. Increasing urbanization is replacing farms in the Central Valley. And during droughts some farmers are forced to fallow their land. These trends will only accelerate as water scarcity issues become more severe."

Three results of the new study are particularly striking: First, during the most recent drought in California's Central Valley, from 2006 to 2009, farmers in the south depleted enough groundwater to fill the nation's largest man-made reservoir, Lake Mead near Las Vegas—a level of groundwater depletion that is unsustainable at current recharge rates.

Second, a third of the groundwater depletion in the High Plains occurs in just 4% of the land area. And third, the researchers project that if current trends continue some parts of the southern High Plains that currently support irrigated agriculture, mostly in the Texas Panhandle and western Kansas, will be unable to do so within a few decades.

California's Central Valley is sometimes called the nation's "fruit and vegetable basket." The High Plains, which run from northwest Texas to southern Wyoming and South Dakota, are sometimes called the country's "grain basket." Combined, these two regions produced agricultural products worth $56 billion in 2007, accounting for much of the nation's food production. They also account for half of all groundwater depletion in the U.S., mainly as a result of irrigating crops.

In the early 20th century, farmers in California's Central Valley began pumping groundwater to irrigate their crops. Over time, groundwater levels dropped as much as 400 feet in some places. From the 1930s to ’70s, state and federal agencies built a system of dams, reservoirs and canals to transfer water from the relatively water-rich north to the very dry south. Since then, groundwater levels in some areas have risen as much as 300 feet. In the High Plains, farmers first began large-scale pumping of groundwater for crop irrigation in the 1930s and ’40s; but irrigation greatly expanded in response to the 1950s drought. Since then, groundwater levels there have steadily declined, in some places more than 150 feet.

Scanlon and her colleagues at the U.S. Geological Survey and the Université de Rennes in France used water level records from thousands of wells, data from NASA's GRACE satellites, and computer models to study groundwater depletion in the two regions.

GRACE satellites monitor changes in Earth’s gravity field which are controlled primarily by variations in water storage. Byron Tapley, director of the university's Center for Space Research, led the development of the GRACE satellites, which recently celebrated their 10th anniversary.

Scanlon and her colleagues suggested several ways to make irrigated agriculture in the Central Valley more sustainable: Replace flood irrigation systems (used on about half of crops) with more efficient sprinkle and drip systems and expand the practice of groundwater banking—storing excess surface water in times of plenty in the same natural aquifers that supply groundwater for irrigation. Groundwater banks currently store 2 to 3 cubic kilometers of water in California, similar to or greater than storage capacities of many of the large surface water reservoirs in the state. Groundwater banks provide a valuable approach for evening out water supplies during climate extremes ranging from droughts to floods.

For various reasons, Scanlon and other experts don't think these or other engineering approaches will solve the problem in the High Plains. When groundwater levels drop too low to support irrigated farming in some areas, farmers there will be forced to switch from irrigated crops such as corn to non-irrigated crops such as sorghum, or to rangeland. The transition could be economically challenging because non-irrigated crops generate about half the yield of irrigated crops and are far more vulnerable to droughts.

"Basically irrigated agriculture in much of the southern High Plains is unsustainable," said Scanlon.

Marc Airhart | Newswise Science News
Further information:
http://www.utexas.edu

More articles from Agricultural and Forestry Science:

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>