Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse Gas Calculator Connects Farming Practices with Carbon Credits

09.08.2010
Web-based tool helps farmers reduce greenhouse gas losses and gain economic advantage

Greenhouse gas markets, where invisible gases are traded, must seem like black boxes to most people. Farmers can make money on these markets, such as the Chicago Climate Exchange, by installing methane capture technologies in animal-based systems, no-till farming, establishing grasslands, and planting trees.

Farmers, students, extension educators, offset aggregators, and other stakeholders need to understand how to change farming practices to maximize their potential economic returns in these new markets.

To open the black box, researchers at the W.K. Kellogg Biological Station, including Claire P. McSwiney, Sven Bohm, Peter R. Grace, and G. Philip Robertson, developed the Farming Systems Greenhouse Gas Emissions Calculator, a simple web-based tool to help users make economically and environmentally sound decisions.

The first page of the calculator asks users to choose a county of interest from anywhere in the US. An input/output window allows them to choose which crops they will grow, yields, tillage practices, and nitrogen fertilizer rates. Default values based on localized USDA statistics are provided as a starting point.

Given the farming practices chosen, the calculator tells the user how much carbon was stored in the soil or lost to the atmosphere, nitrous oxide (a greenhouse gas 300 times more potent than carbon dioxide) lost from the soil in response to fertilizer application, carbon dioxide produced by tractors, and carbon dioxide produced in manufacturing the fertilizer.

In an article in the 2010 Journal of Natural Resources and Life Science Education, published by the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America, the authors used the calculator to demonstrate how tillage compares with no-till in a three-year rotation of corn, soybean, and wheat.

Whether tilled or untilled, corn years always had the largest greenhouse gas losses due to large fertilizer additions. Wheat requires less fertilizer and soybeans require none. No-till management reduced greenhouse gas emissions by 50% due to soil carbon storage.

In another comparison, the amount of fertilizer applied was changed from 134 to 101 kg. Such a reduction could be achieved without a yield penalty by more precisely applying fertilizers or by using new fertilizer recommendations. Excess nitrogen in soil is readily transformed to nitrous oxide. By simply reducing fertilizer applications, the cropping system reduced greenhouse gas emissions 12%.

In an Environmental Science class at Kalamazoo College, the authors used the calculator for an in-class exercise. Using the farming systems calculator allowed students to take control and make the management changes they had been discussing for weeks. By making the management decisions themselves and ‘seeing’ what happened to soil carbon, the connections between changes in farm practices and the potential for economic gain became much clearer.

Farmers and other agricultural professionals can use the program to participate in similar exercises. By comparing different cropping scenarios against one another, the practices with the most promise for mitigating atmospheric greenhouse gas concentrations become readily apparent. Those not familiar with agriculture learn how certain farming practices can have a positive environmental impact.

The greenhouse gas calculator is available at http://www.kbs.msu.edu/ghgcalculator/.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/issues/. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Sustainable forest management contributes more to climate protection than forest wilderness
07.02.2020 | Max-Planck-Institut für Biogeochemie

nachricht Microscopic partners could help plants survive stressful environments
30.01.2020 | Washington State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>