Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grafted Watermelon Plants Take in More Pesticides

01.02.2012
The widely used farm practice of grafting watermelon and other melon plants onto squash or pumpkin rootstocks results in larger amounts of certain pesticides in the melon fruit, scientists are reporting in a new study.

Although only low amounts of pesticides appeared in the fruit in the study, the scientists advise that commercial farmers use gcautionh when grafting watermelon plants to squash in a report that appears in ACSf Journal of Agricultural and Food Chemistry.

Mehmet Isleyen and colleagues explain that farmers graft watermelon and other fruits onto the roots of gourd plants because it makes the fruit more resistant to diseases. In Turkey, where the group did the study, more than 95 percent of watermelons grow from grafted seedlings. Although the gourds are hardier, previous research has shown they accumulate pesticides called organochlorines. Organochlorines have been widely banned because of concerns about their effects on human health and wildlife. Despite the fact that their remnants can linger in the soil for decades, some organochlorines remain in use. While traditional watermelon plants do not take up these compounds, the researchers wanted to resolve uncertainty about watermelon grown on the roots of plants in the squash family.

The group grew common Turkish watermelon-squash graft seedlings in soil taken from a farming region there. They tested the roots, stems, leaves and fruit of the plants and found that organochlorine levels were as much as 140 times higher in the stems of squash-grafted watermelons than in intact watermelons. However, while still urging caution, the group notes that these levels are 6-12 times lower than accepted limits of the pesticides in produce in the U.S. and Turkey.

The authors acknowledge funding from The Scientific and Technological Research Council of Turkey.

Accumulation of Weathered p,pŒ-DDTs in Grafted Watermelon
http://pubs.acs.org/stoken/presspac/presspac/abs/10.1021/jf204150s
Journal of Agricultural and Food Chemistry

Michael Woods | Newswise Science News
Further information:
http://www.acs.org

More articles from Agricultural and Forestry Science:

nachricht Global farming trends threaten food security
11.07.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Scientists decode DNA secrets of world's toughest bean
09.07.2019 | University of California - Riverside

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>