Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose facilitates the use of natural indigo

08.01.2009
Research Scientist Anne Vuorema of MTT Agrifood Research Finland proves in her doctoral dissertation that glucose can serve as a reducing agent of indigo. This finding is significant for devising more ecological dyeing practices for the textile industry.

Indigo is a vat dye and it needs to be reduced to its water-soluble leuco-form before dyeing. This allows the actual dye to pass on to textile fibres. Glucose is known to be a good reducing agent, and Vuorema’s work demonstrates that it also works with indigo.

Glucose dyeing seems to suit plant-derived fibres, such as cotton and flax, which withstand a high pH (11–12). However, at this stage it cannot be recommended for animal fibres, such as wool and silk (which can only withstand a pH of up to 9).

A specialised field with few experts

Anne Vuorema’s field of study is not widely known, and there are perhaps only 20 researchers worldwide whose work focuses on plant-derived indigo. Vuorema and MTT launched the indigo research as part of the EU Spindigo project in 2001–2004. The project prompted questions which Vuorema attempted to answer in her dissertation.

Vuorema works as an external researcher for MTT Plant Production Research. The Finnish Cultural Foundation granted a scholarship for her doctoral dissertation in three years. In 2007, the Academy of Finland funded her research at the University of Bath in England. This is where she has conducted most of her electrochemical research.

Vuorema conducted her research at the University of Bath and the University of Reading in 2004–2006. Professor Philip John at the University of Reading was the leader of the Spindigo project and he also supervised Vuorema’s research in Reading.

Anne Vuorema’s research provides answers that enable researchers to improve the extraction of indigo from the leaves of dyer’s woad (Isatis tinctoria L.). Her work enhances the energy efficiency of dyeing and can potentially promote the profitable use of plant-derived indigo.

Dyer’s woad is the best known of all indigo-producing plants in Europe. Plant-derived indigo was commonly produced until the early 20th century when synthetic indigo replaced it. The blue dye used in jeans, for instance, is nowadays synthetically produced from oil, in a process which wastes non-renewable natural resources and burdens the environment with synthetic chemicals.

Electrochemical reduction enables a clean process

In her dissertation research, Anne Vuorema developed a new electrochemical method for determining the purity of indigo. She reduced plant-derived indigo using glucose and measured the indigo concentration in the mixture using a new method. This is a great improvement in determining the purity of plant-derived indigo.

The method can also be applied to assess the purity of other similar chemicals.
“The degree of purity of plant-derived indigo is fairly low. Crude indigo has a dye content of less than 50%, while synthetic indigo has a dye content of over 95%. The impurities and means to reduce them are not yet well known,” Vuorema explains.
Businesses look for guaranteed standard quality of dye. At the same time, ecologically geared companies are looking for increasingly natural methods for dyeing fabrics, among other things.

“Plant-derived indigo is a marginal, alternative product, and it does not currently compete with synthetic indigo,” Vuorema says.

Vuorema also investigated indirect electrochemical reduction. She discovered that 1.8-dihydroxyanthraquinone was an efficient catalyst for glucose-induced reduction. Electrochemical reduction can only be introduced by major companies as it requires investment in special equipment.

“We still need to achieve a lower pH in glucose reduction and solve the matter of impurities,” Vuorema muses.

Ulla Jauhiainen | alfa
Further information:
http://oa.doria.fi/handle/10024/42825
http://www.mtt.fi

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>