Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose facilitates the use of natural indigo

08.01.2009
Research Scientist Anne Vuorema of MTT Agrifood Research Finland proves in her doctoral dissertation that glucose can serve as a reducing agent of indigo. This finding is significant for devising more ecological dyeing practices for the textile industry.

Indigo is a vat dye and it needs to be reduced to its water-soluble leuco-form before dyeing. This allows the actual dye to pass on to textile fibres. Glucose is known to be a good reducing agent, and Vuorema’s work demonstrates that it also works with indigo.

Glucose dyeing seems to suit plant-derived fibres, such as cotton and flax, which withstand a high pH (11–12). However, at this stage it cannot be recommended for animal fibres, such as wool and silk (which can only withstand a pH of up to 9).

A specialised field with few experts

Anne Vuorema’s field of study is not widely known, and there are perhaps only 20 researchers worldwide whose work focuses on plant-derived indigo. Vuorema and MTT launched the indigo research as part of the EU Spindigo project in 2001–2004. The project prompted questions which Vuorema attempted to answer in her dissertation.

Vuorema works as an external researcher for MTT Plant Production Research. The Finnish Cultural Foundation granted a scholarship for her doctoral dissertation in three years. In 2007, the Academy of Finland funded her research at the University of Bath in England. This is where she has conducted most of her electrochemical research.

Vuorema conducted her research at the University of Bath and the University of Reading in 2004–2006. Professor Philip John at the University of Reading was the leader of the Spindigo project and he also supervised Vuorema’s research in Reading.

Anne Vuorema’s research provides answers that enable researchers to improve the extraction of indigo from the leaves of dyer’s woad (Isatis tinctoria L.). Her work enhances the energy efficiency of dyeing and can potentially promote the profitable use of plant-derived indigo.

Dyer’s woad is the best known of all indigo-producing plants in Europe. Plant-derived indigo was commonly produced until the early 20th century when synthetic indigo replaced it. The blue dye used in jeans, for instance, is nowadays synthetically produced from oil, in a process which wastes non-renewable natural resources and burdens the environment with synthetic chemicals.

Electrochemical reduction enables a clean process

In her dissertation research, Anne Vuorema developed a new electrochemical method for determining the purity of indigo. She reduced plant-derived indigo using glucose and measured the indigo concentration in the mixture using a new method. This is a great improvement in determining the purity of plant-derived indigo.

The method can also be applied to assess the purity of other similar chemicals.
“The degree of purity of plant-derived indigo is fairly low. Crude indigo has a dye content of less than 50%, while synthetic indigo has a dye content of over 95%. The impurities and means to reduce them are not yet well known,” Vuorema explains.
Businesses look for guaranteed standard quality of dye. At the same time, ecologically geared companies are looking for increasingly natural methods for dyeing fabrics, among other things.

“Plant-derived indigo is a marginal, alternative product, and it does not currently compete with synthetic indigo,” Vuorema says.

Vuorema also investigated indirect electrochemical reduction. She discovered that 1.8-dihydroxyanthraquinone was an efficient catalyst for glucose-induced reduction. Electrochemical reduction can only be introduced by major companies as it requires investment in special equipment.

“We still need to achieve a lower pH in glucose reduction and solve the matter of impurities,” Vuorema muses.

Ulla Jauhiainen | alfa
Further information:
http://oa.doria.fi/handle/10024/42825
http://www.mtt.fi

More articles from Agricultural and Forestry Science:

nachricht Redefining the future of cattle breeding
17.09.2019 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Breeders release new flaxseed cultivar with higher yield
11.09.2019 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>