Products we commonly buy at the supermarket, such as tortillas and corn chips, are made from food grade corn. The corn is grown, harvested, bought by a food company, turned into masa (dough from ground corn) through a chemical process, and then made into our favorite products.
Each of these important steps has implications for the next -- and some scientists are calling for more research to make each step better to benefit both companies and consumers.
"Breeding, production, and processing of food grade corn is a massive industry," explains Candice Hirsch from University of Minnesota. "Yet, there is limited knowledge on each of these steps."
She adds that each step of this value chain spans many scientific areas. This results in the information being spread across scientists who don't regularly communicate with each other.
To start tackling this problem, Hirsch and her team reviewed knowledge on making corn into food products. They used information from both universities and industry.
The researchers laid out the importance of corn quality and masa quality. Hirsch says that the breeding of food grade corn receives relatively few resources. However, this corn is made into products we eat. Better quality corn will provide a better product to consumers.
Better corn would have a higher yield, costing companies less money and possibly making the product cheaper. It could also increase the quality and consistency of the products we buy.
The hardness of the corn kernels, for example, is important. It can affect how well the corn ships and how many of the kernels crack during shipping. These cracks then affect the moisture uptake while the masa is being made.
Combined with other qualities of the kernel, such as starch levels, the amount of moisture taken up by the ground corn can impact the masa.
"The quality of grain and masa is extremely important to the final product quality," Hirsch explains. "If the consistency of the masa is not correct, there will be consequences for the texture and taste of the final products."
Hirsch and her colleagues would like to see researchers explore all of these areas to better understand how to breed and grow the best corn for making high quality masa. The work would involve plant breeders, agronomists, chemists, food scientists, production specialists, and many others.
"Ideally we would like to determine which attributes are best to allow us to breed better corn, and also come up with methods to be able to quickly test these attributes," Hirsch says. "Another application is doing screening so companies buying corn can determine if a shipment has the necessary attributes to make a high-quality product."
She adds that the collaboration between University of Minnesota, PepsiCo, and Corteva was critical in reviewing research in this area. In working together, they were able to define what was known and unknown across the value chain, and how to fill the gaps.
Additionally, the public is interested in this work because we like to know where our food comes from. The researchers' review provides a look at how corn chips are made. It also identifies factors that affect taste, texture, and nutritional aspects of chips.
"I have worked in a number of research activities that involve improving raw plant material for direct human consumption," Hirsch says. "I find it very rewarding. It is very relatable to the general public, which makes it a great way to connect with people."
###
Read more about this work in Crop Science. This research was supported in part by the Frito Lay Fellowship, PepsiCo, Inc. Any opinions or scientific interpretations are those of the authors and do not necessarily reflect positions or policies of PepsiCo, Inc.
Rachel Leege | EurekAlert!
Further reports about: > Agronomy > corn chip > food products > human consumption > masa > nutritional
Interaction with fungus containing N2-fixing endobacteria improves rice nitrogen nutrition
26.11.2019 | American Society of Plant Biologists
Strengthening regional development through old growth beech forests in Europe
20.11.2019 | Hochschule für nachhaltige Entwicklung Eberswalde
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.
Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Detailed insight into stressed cells
05.12.2019 | Life Sciences
05.12.2019 | Life Sciences
First field measurements of laughing gas isotopes
05.12.2019 | Materials Sciences