Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant grass offers clues to growing corn in cooler climes

16.09.2008
A giant perennial grass used as a biofuels source has a much longer growing season than corn, and researchers think they’ve found the secret of its success. Their findings offer a promising avenue for developing cold-tolerant corn, an advance that would significantly boost per-acre yields.

The new study, from researchers at University of Illinois, appears this month in Plant Physiology Preview.

Miscanthus x giganteus is one of the most productive grasses known. It is able to capture the sun’s energy even as cool temperatures shut down photosynthesis in other plants. In Illinois, green Miscanthus leaves emerge up to six weeks before corn can be planted. Miscanthus thrives into October, while corn leaves wither in late August.

Corn and Miscanthus are C4 plants, which are more efficient than C3 plants in converting sunlight into leaves and stalks. (C3 and C4 simply refer to the number of carbon atoms in a molecule critical to photosynthesis.)

“The C4 process differs from C3 in having just four extra steps in its metabolism,” said Stephen Long, a professor of crop sciences and principal investigator on the study. “There are four extra proteins in this process, so we assumed that these proteins are related to low temperature tolerance.”

When they compared the levels of these proteins in plants grown in warm and cold conditions, the researchers noticed that one of the proteins, pyruvate phosphate dikinase (PPDK), was present at much higher levels in the Miscanthus leaves grown at cool temperatures than in the leaves of either corn or Miscanthus grown in warmer conditions.

Although photosynthesis declined in both plants when they were first subjected to cool temperatures, after two days, photosynthesis rebounded in the Miscanthus.

The increase corresponded to the upsurge in PPDK in its leaves.

“After seven days PPDK was 10 times the level it was in the warm conditions,” Long said.

In C4 plants, PPDK catalyzes a chemical reaction in the leaf critical to the cascade of reactions that convert carbon from carbon dioxide into starches that form the plant’s tissues.

Previous studies had shown that PPDK is generally not very stable in cold conditions. The protein is made up of four subunits, which tend to come apart at low temperatures, Long said.

To test how cold temperatures affect the protein when it is expressed in cells at high concentrations, post-doctoral fellow Dafu Wang cloned the PPDK gene into E. coli bacteria to produce large quantities of the protein.

“What he showed in the test tube was that if you concentrate the protein, then it becomes more resistant to cold,” Long said. “At higher concentration the protein creates its own microenvironment where in the cold it doesn’t come apart. This appears to be the secret of success for Miscanthus at low temperature: Expressing more of the protein allows it to photosynthesize at low temperature where corn can’t.”

The next step for the researchers is to develop a corn plant in which this gene is expressed at high levels to determine if that will make the corn more tolerant of low temperatures, Long said. Cold weather after emergence of corn in the spring or in late summer during grain-filling can limit photosynthesis, he said.

“This change should make corn more resistant to these cold weather events.”

The National Science Foundation supported this research. The research team is also affiliated with the Institute for Genomic Biology at Illinois and the USDA.

Editor’s note:
To reach Stephen Long, e-mail: stevel@life.uiuc.edu.
To reach co-author Stephen Moose, call: 217-244-6308;
email: smoose@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>