Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes controlling mycorrhizal colonization discovered in soybean

07.01.2020

Like most plants, soybeans pair up with soil fungi in a symbiotic mycorrhizal relationship. In exchange for a bit of sugar, the fungus acts as an extension of the root system to pull in more phosphorus, nitrogen, micronutrients, and water than the plant could on its own.

Mycorrhizal fungi occur naturally in soil and are commercially available as soil inoculants, but new research from the University of Illinois suggests not all soybean genotypes respond the same way to their mycorrhizal relationships.


A University of Illinois/USDA Agricultural Research Service study has identified genes related to mycorrhizal fungus colonization in soybeans.

Credit: Michelle Pawlowski, University of Illinois

"In our study, root colonization by one mycorrhizal species differed significantly among genotypes and ranged from 11 to 70%," says Michelle Pawlowski, postdoctoral fellow in the Department of Crop Sciences at Illinois and co-author on a new study in Theoretical and Applied Genetics.

To arrive at that finding, Pawlowski grew 350 diverse soybean genotypes in pots filled with spores of a common mycorrhizal fungus. After six weeks, she looked at the roots under a microscope to evaluate the level of colonization.

"It was a little bit of a gamble because we didn't know much about soybean's relationship with mycorrhizae and did not know if differences in colonization among the soybean genotypes would occur. So when we screened the soybean genotypes and found differences, it was a big relief," Pawlowski says. "That meant there was a potential to find genetic differences, too."

The process of root colonization starts before fungal spores even germinate in the soil. Roots exude chemicals, triggering spores to germinate and grow toward the root. Once the fungus makes contact, there's a complex cascade of reactions in the plant that prevents the usual defensive attack against invading pathogens. Instead, the plant allows the fungus to enter and set up shop inside the root, where it creates tiny tree-like structures known as arbuscules; these are where the fungus and plant trade sugar and nutrients.

The study suggests there is a genetic component to root colonization rates in soybean. To find it, Pawlowski compared the genomes of the 350 genotypes and honed in on six genomic regions associated with differing levels of colonization in soybean.

"We were able to use all the information we have on the soybean genome and gene expression to find possible causal genes within these six regions," she says.

According to the study, the genes control chemical signals and pathways that call fungus toward roots, allow the plant to recognize mycorrhizal fungus as a "good guy," help build arbuscules, and more. "For almost every step in the colonization process, we were finding related genes within those regions," Pawlowski says.

Knowing which genes control root colonization could lead breeders to develop soybean cultivars with a higher affinity for mycorrhizal fungus, which could mean improved nutrient uptake, drought tolerance, and disease resistance.

"This environmentally friendly approach to improving soybean production may also help reduce the overuse of fertilizers and pesticides and promote more holistic crop production systems," says Glen Hartman, plant pathologist in the Department of Crop Sciences and crop pathologist for USDA-ARS.

###

The article, "Whole-genome resequencing identifies quantitative trait loci associated with mycorrhizal colonization of soybean," is published in Theoretical and Applied Genetics [DOI: 10.1007/s00122-019-03471-5]. Authors include Michelle Pawlowski, Tri Vuong, Babu Valliyodan, Henry Nguyen, and Glen Hartman. Funding was obtained from the United Soybean Board and the USDA Agricultural Research Service.

The Department of Crop Sciences is in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois.

Media Contact

Lauren Quinn
ldquinn@illinois.edu
217-300-2435

 @ACESIllinois

http://aces.illinois.edu/ 

Lauren Quinn | EurekAlert!
Further information:
https://aces.illinois.edu/news/genes-controlling-mycorrhizal-colonization-discovered-soybean
http://dx.doi.org/10.1007/s00122-019-03471-5

More articles from Agricultural and Forestry Science:

nachricht Algorithms and sensors for sustainable and future-proof agriculture
22.01.2020 | Technische Universität München

nachricht Are sinking soils in the Everglades related to climate change?
15.01.2020 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>