Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Game changer: New chemical keeps plants plump

25.10.2019

UC Riverside-led team's discovery offers hope for crops despite drought

A UC Riverside-led team has created a chemical to help plants hold onto water, which could stem the tide of massive annual crop losses from drought and help farmers grow food despite a changing climate.


Recovery from drought stress imposed on wheat. Plant treated with OP on the right.

Credit: UCR

"Drought is the No. 1 cause, closely tied with flooding, of annual crop failures worldwide," said Sean Cutler, a plant cell biology professor at UC Riverside, who led the research. "This chemical is an exciting new tool that could help farmers better manage crop performance when water levels are low."

Details of the team's work on the newer, more effective anti-water-loss chemical is described in a paper published today in Science. This chemical, Opabactin, is also known as "OP," which is gamer slang for "overpowered," referring to the best character or weapon in a game.

"The name is also a shoutout to my 10-year-old at home," Cutler said.

An earlier version of OP developed by Cutler's team in 2013, called Quinabactin, was the first of its kind. It mimics abscisic acid, or ABA, the natural hormone produced by plants in response to drought stress. ABA slows a plant's growth, so it doesn't consume more water than is available and doesn't wilt.

"Scientists have known for a long time that spraying plants with ABA can improve their drought tolerance," Cutler said. "However, it is too unstable and expensive to be useful to most farmers."

Quinabactin seemed to be a viable substitute for the natural hormone ABA, and companies have used it as the basis of much additional research, filing more than a dozen patents based on it. However, Quinabactin did not work well for some important plants, such as wheat, the world's most widely grown staple crop.

When ABA binds to a hormone receptor molecule in a plant cell, it forms two tight bonds, like hands grabbing onto handles. Quinabactin only grabs onto one of these handles.

Cutler, along with other collaborators from UCR and the Medical College of Wisconsin, searched millions of different hormone-mimicking molecules that would grab onto both handles. This searching, combined with some chemical engineering, resulted in OP.

OP grabs both handles and is 10-times stronger than ABA, which makes it a "super hormone." And it works fast. Within hours, Cutler's team found a measurable improvement in the amount of water plants released.

Because OP works so quickly, it could give growers more flexibility around how they deal with drought.

"One thing we can do that plants can't is predict the near future with reasonable accuracy," Cutler said. "Two weeks out, if we think there's a reasonable chance of drought, we have enough time to make decisions -- like applying OP -- that can improve crop yields."

Initial funding for this project was provided by Syngenta, an agrochemical company, and the National Science Foundation.

Cutler's team is now trying to "nerf" their discovery.

"That's gamer speak for when a weapon's power is reduced," Cutler said.

Whereas OP slows growth, the team now wants to find a molecule that will accelerate it. Such a molecule could be useful in controlled environments and indoor greenhouses where rainfall isn't as big a factor.

"There's times when you want to speed up growth and times when you want to slow it down," Cutler said. "Our research is all about managing both of those needs."

Media Contact

Jules Bernstein
Jules.Bernstein@ucr.edu
951-827-4580

 @UCRiverside

http://www.ucr.edu 

Jules Bernstein | EurekAlert!
Further information:
https://news.ucr.edu/articles/2019/10/24/game-changer-new-chemical-keeps-plants-plump
http://dx.doi.org/10.1126/science.aaw8848

More articles from Agricultural and Forestry Science:

nachricht Are sinking soils in the Everglades related to climate change?
15.01.2020 | American Society of Agronomy

nachricht Biodiverse forests better at storing carbon for long periods, says study
07.01.2020 | Earth Institute at Columbia University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>