Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting a destructive crop disease with mathematics

21.06.2017

An international team of researchers has used mathematical modelling to understand new ways of combating maize lethal necrosis, an emerging disease that poses a serious threat to food security in sub-Saharan Africa.

Maize lethal necrosis (MLN) arises from the interaction of two viruses: maize chlorotic mottle virus (MSMV) and a virus from a group named potyviruses, often sugarcane mosaic virus (SCMV). But traditional modelling has focused on understanding just one virus at a time. By modelling the spread of these two co-infecting viruses together, within and between growing seasons, the team has shed new light on the disease that will help farmers to manage it effectively.


This is a maize field in Kenya.

Credit: Nik Cunniffe

The study, published this week in the journal Phytopathology, demonstrates that a combination of crop rotation, using virus-free 'clean seed', roguing (removing plants showing disease symptoms) and controlling insect pests is the best way to control MLN. It also highlighted differences in the ability of large and small growers to prevent loss of their maize crop.

"Larger growers have more money for insecticides and buying clean seed, both of which can greatly reduce disease levels. Crop rotation - an important component of control for smaller growers - disrupts transmission from season to season, but it requires coordination between farmers to ensure the virus doesn't build up in surrounding fields. Unless significant investment is made in farmer training, this unfortunately remains more realistic for larger farmers, who tend to be better organized and to have larger growing areas," said Dr Nik Cunniffe, an expert in mathematical biology based in Cambridge's Department of Plant Sciences, who contributed to the work.

... more about:
»crop »crop disease »farmer »maize »viruses

Modelling the effects of two viruses infecting the same plant is rarely done, despite this happening frequently in the real world. The approach is highly relevant for other regions of the world where Maize Lethal Necrosis is an emerging threat to maize production, such as South East Asia and South America. It could also inform the management and control of other destructive plant diseases caused by combinations of pathogens, such as sweet potato virus disease in Africa and rice tungro disease in Asia.

"We've developed a new framework to model co-infecting viruses, such as those causing Maize Lethal Necrosis, even when there's not very much biological information available. When two viruses infect a plant they can interact with each other to cause much worse symptoms and greater losses of yield. If you're a subsistence farmer relying on income from the maize you're growing, infection of the crop with MLN can be devastating," Cunniffe said.

Maize is one of sub-Saharan Africa's staple food crops, and MLN has been spreading in Kenya for the last six years, causing devastating harvest losses of up to 90% in heavily affected regions. This affects not only direct availability of food, but also local income and employment. The study focused on Maize Lethal Necrosis disease in Kenya, where crop losses are particularly high, although the disease has spread to other countries in Africa. Infected corn plants die prematurely or are frequently barren, drastically reducing the yield. Most of the nation's maize supply comes from small to medium-size farms, which are less able to withstand threats to their food production than large resource-rich farms.

With the global population estimated to reach nine billion people by 2050, producing enough food will be one of this century's greatest challenges. Cunniffe is a member of the Cambridge Global Food Security Initiative at Cambridge, which is involved in addressing the issues surrounding food security at local, national and international scales. The Initiative recognises that expertise from many disciplines is required to develop effective solutions.

The research arose from the NIMBioS Working Group on Multiscale Vectored Plant Viruses, which included mathematicians, ecologists, plant pathologists, and evolutionary biologists who met over several years to develop novel mathematical methods for the study of plant pathology. It was funded by the National Institute for Mathematical and Biological Synthesis.

Media Contact

Nik Cunniffe
njc1001@cam.ac.uk
44-122-333-3954

 @Cambridge_Uni

http://www.cam.ac.uk 

Nik Cunniffe | EurekAlert!

Further reports about: crop crop disease farmer maize viruses

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>