Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer Marten Detections in California Forest Linked to Decline in Habitat

25.10.2011
Pacific Southwest Research Station/USDA Forest Service
Science that makes a difference. . .

The reclusive American marten is getting even harder to find in the Sierra Nevada, according to a study by a team of researchers from the U.S. Forest Service and Oregon State University. A new study at the Sagehen Experimental Forest found that marten detections have dropped 60 percent since the 1980s—a decrease that may be caused by a degradation of the wooded areas in which they live, researchers say. Their findings appeared in the current issue of the Journal of Wildlife Management.

“Previous work had revealed that marten populations in the northern Sierra and southern Cascades in California have become more fragmented since the early 1900s, but the current work at Sagehen may help explain the mechanism for this pattern,” says co-author Bill Zielinski, research ecologist for the USDA Forest Service’s Pacific Southwest Research Station in Arcata, Calif.

In the early 1900s, American marten could be found in many continuous areas in the higher elevations of the northern Sierra Nevada. Today, populations of the small mammal, which is related to the weasel family and looks like a cross between a mink and a fox, are isolated and discontinuous. Causes for this phenomenon are unclear, but researchers believe that timber harvesting and thinning—the removal of downed woody material on the forest floor—may play a part in the population decline.

The Sagehen Experimental Forest is located in the Tahoe National Forest about 30 miles north of Lake Tahoe and is managed by the Pacific Southwest Research Station and the University of California, Berkeley. Researchers recorded marten detections using track plates—long, baited rectangular boxes which martens enter and leave their tracks on contact paper. The data, which was collected in 2007 and 2008, was then compared to survey results from 1980 to 1993.

“We’ve estimated that there has been about a 25 percent loss in suitable habitat for martens since the 1980s,” says lead author and Oregon State University researcher Katie Moriarty. In their journal article, the authors cite the loss of prime marten habitat in the Sagehen Experimental Forest of more than 270 hectares, or nearly 700 acres.

Based on the results of their findings, the research team suggests the following land management strategies for preserving marten habitat:

Retain the remaining patches of old-growth forest habitat, especially near streams and retain patches of fir in the upper elevations.
Retain corridors of dense, old forest between areas where fire considerations make it is necessary to reduce the forest density (i.e., "thin" the forest).

Strive for an approach to forest management that retains old, dead and malformed trees and logs because of their important value as refuges for martens and as habitat for their prey.

Read the full article.
http://www.fs.fed.us/psw/publications/zielinski/psw_2011_zielinski002(moriarty).pdf

Headquartered in Albany, Calif., the Pacific Southwest Research develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has laboratories and research centers in California, Hawaii and the U.S.-affiliated Pacific Islands. For more information, visit www.fs.fed.us/psw/.

Sherri Eng | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Forest Service Nevada Pacific coral Sierra Southwest forest ecosystem habitat

More articles from Agricultural and Forestry Science:

nachricht No soil left behind: How a cost-effective technology can enrich poor fields
10.10.2019 | International Center for Tropical Agriculture (CIAT)

nachricht Cheap as chips: identifying plant genes to ensure food security
09.10.2019 | University of Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>