Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertility or Powdery Mildew Resistance?

12.11.2010
Powdery mildew is a fungus that infects both crop and ornamental plants. Each year, powdery mildew and other plant pathogens cause immense crop loss.

Despite decades of intense research, little is known of the plant molecules that allow fungal hyphae to invade the host’s epidermal cells.

A European research group lead by Ueli Grossniklaus, a plant geneticist at the University of Zurich, now published a study in Science shedding a new light on mildew susceptibility in plants and its surprising link to reproduction.

Investigating mildew susceptibility in plants is not really a main research focus for Ueli Grossniklaus, a professor for plant genetics at the University of Zurich, Switzerland. Grossniklaus’ lab mainly investigates the molecular mechanism of both sexual and asexual plant reproduction. His group conducts fundamental research on the model plant Arabidopsis thaliana, whose complete genome has been deciphered.

Recently, Grossniklaus and his team uncovered a mutant that they named nortia after an Etruscan goddess of fertility. Together with FERONIA – a gene Grossniklaus’ group had previously discovered – NORTIA plays a key role in the communication between the female and male cells during fertilization. Surprisingly, examination of the structure of the NORTIA gene revealed that it was very similar to the structure the Mlo gene of barley. In barley, Mlo is responsible for powdery mildew susceptibility, with mlo mutants showing a resistance against many strains of powdery mildew infection. This mutation is the only known permanent resistance against powdery mildew infection and it is widely used in barley breeding. Plants with such inherent resistance are of great importance, as they reduce crop loss due to powdery mildew infection without the use of fungicides. Up until now, little was known about the molecular components that allow the fungus to penetrate the epidermal cells of leafs of other plants.

Pollination and fungal infections are based on similar communication mechanisms

In flowering plants, fertilization occurs after the male pollen tube penetrates the female sexual apparatus, a process controlled by NORTIA and FERONIA. Until the mid 19th century, pollen tubes were considered fungus-like pathogens, before their role in fertilization was discovered. This is because, similar to pollen tubes, pathogenic fungal hyphae penetrate the plant’s tissue via tip growth. So the scientists further investigated the connection between the tip growing pollen tubes and tip growing fungus hyphae.

”NORTIA is only expressed in sexual apparatus of the plant. So there is no way for NORTIA to be responsible for powdery mildew susceptibility,” Grossniklaus explained. Therefore, the researchers focused on the role of feronia, the second mutant important for pollen tube reception. Contrary to NORTIA, FERONIA is expressed in throughout the plant, including the leaf epidermis. In collaboration Ralph Panstruga’s group at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, the scientists could demonstrate that Arabidopsis with the wild-type FERONIA gene was susceptible to powdery mildew infection. Plants with an inactivated feronia gene, however, were resistant against powdery mildew. But the plant pays an enormous price for such resistance: the plant is infertile. Both identification processes – of either tip growing pollen tubes or invading fungal hyphae – seem to use the same or very similar molecules. As Grossniklaus stresses: ”This explains why plants could not get rid of the gene causing powdery mildew susceptibility during the course of evolution.”

Among researchers working on powdery mildew, these results have caused enormous interest worldwide as the signal pathway of powdery mildew infection is still poorly understood. Facing a constantly growing population, it is important to be able to breed crops beside barley with a permanent resistance against powdery mildew. The close linkage of powdery mildew susceptibility and fertility show how difficult it will be to achieve this goal.

Literature: Sharon A. Kessler, Hiroko Shimosato-Asano, Nana Friderike Keinath, Samuel Elias Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus, Conserved molecular components for pollen tube reception and fungal invasion, in: Science, 12. November 2010, Vol. 330. no. 6006, pp. 968 – 971, DOI: 10.1126/science.1195211

Contact:
Prof. Ueli Grossniklaus
Institute of Plant Biology University of Zurich
Tel. +41 44 634 82 40
E-Mail: grossnik@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>