Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferns took to the trees and thrived

06.07.2009
As flowering plants like giant trees quickly rose to dominate plant communities during the Cretaceous period, the ferns that had preceded them hardly saw it as a disappointment.

In fact, they flourished. While modern tropical rain forests were becoming established, ferns climbed aboard, and experienced a flowering of their own species diversity.

"The canopy is there and -- boom -- diversification," said Duke University researcher Eric Schuettpelz, who is completing a post-doctoral fellowship in biology with associate professor Kathleen Pryer.

By integrating genomic data from 400 living fern species with information from the fossil record, Schuettpelz and Pryer constructed a new time-calibrated family tree for ferns. Their study appears on the cover of the July 7 Proceedings of the National Academy of Sciences.

Though ancient, it appears that ferns really came into their own during a very hot, very wet period that peaked about 10 million years after the Cretaceous/Tertiary boundary 65 million years ago.

Two key innovations may have led to the ferns' success in the face of the new competition from flowering plants, Schuettpelz said. Some ferns developed the ability to make a living on light that was more toward the red end of spectrum -- shade, in other words. And, around this time, some ferns also developed the ability to live on trees, sometimes without soil, as epiphytes.

By storing water, developing thicker skin, or being more tolerant to drying out, the epiphytic ferns could now perch on a trunk, limb, or twig and live quite happily more than 100 feet off the forest floor, where moisture, temperature, and sunlight are very different indeed.

Whereas the fossil record seemed to suggest that ferns experienced three distinct pulses of species diversification, the Duke team's analysis shows that there was a fourth, roughly corresponding with the development of epiphytism.

So, as rain forests developed and tropical trees and vines clawed past each other to reach heavenward, they took the ferns up along with them. Thousands of new fern species evolved to take advantage of all the new niches being created in the canopy.

"In some ways I guess, the epiphytes escaped the battle on the ground," Schuettpelz said.

Today, epiphytes comprise about 30 percent of the more than 9,000 living fern species. But this isn't the only plant group that includes epiphytes. This fall, as a post-doctoral fellow at the National Evolutionary Synthesis Center (NESCent), Schuettpelz will begin to look for parallel patterns of diversification in epiphytic flowering plants like bromeliads and orchids.

Pryer and Schuettpelz received support from the National Science Foundation.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>