Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faba fix for corn's nitrogen need

11.04.2018

Faba bean cover crop halves added nitrogen requirement

Researchers have good news for growers. Farmers raising a nitrogen-hungry crop like sweet corn may save up to half of their nitrogen fertilizer cost. The key: using a faba bean cover crop.


Faba beans pods come in a range of sizes and bear varying numbers of seeds. The plants help increase vital nitrogen in the soil.

Credit: Masoud Hashemi

Usage Restrictions: Please use with story only.

Faba bean is an ancient crop increasingly used as a cover crop. Cover crops are grown in the months between main crops when the soil would otherwise be bare. Cover crops can control erosion, build soil, and suppress weeds. Grasses, legumes, and other non-grassy plants are the most commonly used cover crops.

Faba is a legume, as are peas, beans, and lentils. They are a good source of protein. They also bring an important benefit to agriculture: they are nitrogen fixers. These plants, working with bacteria in the soil, take nitrogen from the atmosphere. The decomposing plants then and add nitrogen to the soil. Faba is known to be one of the most powerful nitrogen fixers.

Nitrogen is a vital nutrient for plants' growth. Farmers who grow sweet corn typically add nitrogen in the form of commercial fertilizer for best yield.

Masoud Hashemi and colleagues at the University of Massachusetts Amherst tested faba bean as a cover crop before planting sweet corn. They wanted to learn if the nitrogen from the faba bean plants would meet the high nitrogen needs of the sweet corn. They also wondered whether tilling the faba residues into the soil or leaving them to decompose in place would provide more nitrogen for the corn.

This study showed the timing of when faba was planted had a dramatic effect on the biomass--the total weight--the plants produced before winter weather stopped growth. More biomass means more nitrogen. Faba beans planted on August 1 had more than twice the biomass of faba beans planted just two weeks later.

Not surprisingly, the sweet corn planted the following spring produced much better yields when it was planted in the earliest-sown faba compared to later-sown faba. The amount of nitrogen legumes can add to the soil is closely tied to the amount of biomass they produce.

The sweet corn yields were also significantly higher in the plots where the plant residue was left on the surface (no-till). Tilled residues decomposed quicker than the no-till, providing their nitrogen sooner. This proved to be too soon for the sweet corn. The no-till treatment slowed the decomposition of the faba bean residues. A delayed release of nitrogen into the soil better matched the needs of the young sweet corn.

Even so, the faba bean residues alone did not provide enough nitrogen for the best sweet corn yields. Additional nitrogen was needed. However, only about half as much was needed compared to corn grown without a faba bean cover crop.

"Faba bean cover crops can add a large amount of nitrogen to the soil," Hashemi concluded. "But to make the most of its potential, especially if harvesting some fresh pods is expected, faba bean has to be planted as early as possible after harvesting the summer crop. Moreover, to contribute best to the nitrogen needs of the spring crop, the residues should not be tilled into the soil and must be left on the soil surface."

###

Read more about this research in Agronomy Journal. The research project was supported through grants awarded by Northeast Sustainable Agriculture and Research (SARE) and Massachusetts Department of Agriculture.

Susan Fisk | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

nachricht Goldilocks principle in biology -- fine-tuning the 'just right' signal load
15.10.2018 | Aarhus University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>