Examining Rice Genes for Rice Blast Resistance

Agricultural Research Service (ARS) plant pathologist Yulin Jia at the agency's Dale Bumpers National Rice Research Center in Stuttgart, Ark., determined how those molecular mechanisms work and how resistance genes evolved. Jia studies the molecular relationship between rice and the fungi responsible for the diseases rice blast and sheath blight.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of promoting international food security.

Jia and his colleagues have also mapped two major blast-resistance genes from a rice cultivar from China. Their findings have been reported in the journals Euphytica, Plant Science, and Phytopathology.

A few years ago, Jia visited the International Rice Research Institute (IRRI) in Los Baños, the Philippines, and was able to bring back more than 100 rice lines that contained different genes that confer resistance to the blast fungus. Similarly, IRRI scientists have imported rice germplasm from the ARS collection for their research. Some of this germplasm has shown some resistance to sheath blight strains that occur in their environment, according to Jia.

Genes are constantly changing in order to survive, and over the years the genes in rice and fungi have co-evolved. Resistance is relative to the specific pathogens. For instance, not all humans are immune to flu viruses, because new strains of flu emerge constantly. That is also true for strains of fungi and the rice varieties they infect. So as time goes by, the old resistance genes may not work against the new fungal strains.

Read more about this and other cooperative studies between ARS and international research partners in the October 2011 issue of Agricultural Research magazine.

Media Contact

Sharon Durham EurekAlert!

More Information:

http://www.ars.usda.gov

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors