Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA blueprint for healthier and more efficient cows

27.04.2009
Ground breaking findings by an international consortium of scientists who sequenced and analysed the bovine genome, could result in more sustainable food production.

The findings, published in two reports in the journal Science today, will have a profound impact on Australia’s livestock industry.

CSIRO scientists were among the 300 researchers from 25 countries involved in the six-year Bovine Genome Sequencing Project designed to sequence, annotate and analyse the genome of a female Hereford cow called L1 Dominette.

The scientists discovered that the bovine genome contains 2,870 billion DNA building blocks, encoding a minimum of 22,000 genes. Of major interest to scientists are the differences in the organisation of the genes involved in lactation, reproduction, digestion and metabolism in cows compared to other mammals.

One of the lead authors of the report on the project’s latest findings, CSIRO Livestock Industries researcher Dr Ross Tellam said the bovine genome has about 14,000 genes which are common to all mammals and these constitute the ‘engine room’ of mammalian biology.

“The team found that cows share about 80 per cent of their genes with humans, also providing us with a better understanding of the human genome,” Dr Tellam said.

“One of the surprises in the analysis was that cow and human proteins have more in common than mouse and human proteins, yet it is the mouse that is often used in medical research as a model of human disease conditions.”

Dr Tellam said the research provides an insight into the unique biology and evolution of ruminant animals and helps explain why they have been so successful as a species.

One of the major findings was that the cow has significant rearrangements in many of its immune genes and presumably an enhanced natural ability to defend itself from disease.

“This may be an evolutionary response to an increased risk of opportunistic infections at mucosal surfaces caused by the large number of bacteria and fungi carried in the rumen (the largest of the four compartments that make up the bovine stomach),” Dr Tellam said.

“The second possible explanation is that ruminants and cows are typically found in very large herds, and in these herds there is a greater propensity for disease transmission, so you need to be better equipped to withstand diseases.”

These new findings will point the way for future research that could result in more sustainable food production.

Dr Tellam said the $US53 million Bovine Genome Sequencing Project – led by the Human Genome Sequencing Centre at Baylor College of Medicine (BCM-HGSC) in Houston, Texas – is an example of major achievements that can only be realised by substantial international scientific cooperation.

Using the complete genome sequence from L1 Dominette, the female Hereford cow, scientists also undertook comparative genome sequencing for six more breeds to look for genetic changes.

The resulting bovine HapMap – a literal map of genetic diversity among different populations – is also published in today’s edition of the journal Science.

“Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome yet the current level of diversity within breeds is at least as great as that found within humans,” CSIRO Livestock Industries scientist and one of the project’s group leaders, Dr Bill Barendse, said.

The implications of the genome project for the beef and dairy industries are enormous.

“The availability of very large numbers of single nucleotide polymorphisms (DNA changes in the genetic blueprint) has allowed the development of gene chips that measure genetic variation in cattle populations and will allow the rapid selective breeding of animals with higher value commercial traits.

“This technology is quickly transforming the dairy genetics industry and has the potential to dramatically alter beef cattle industries as well,” Dr Barendse said.

These new genetic tools may provide a means to select more energy-efficient animals with a smaller environmental footprint, particularly animals that produce less greenhouse gas.

The Bovine Sequencing and Analysis Project was led by Drs Richard Gibbs and George Weinstock, co-directors of the BCM-HGSC, Dr Steven Kappes of the US Department of Agriculture, Dr Christine Elsik of Georgetown University and Dr Ross Tellam of CSIRO Australia.

In addition to CSIRO, major funders of the Project were: the National Human Genome Research Institute, which funded more than half of the project; the U.S. Department of Agriculture's Agricultural Research Service and Cooperative State Research, Education, and Extension Service National Research Initiative; the state of Texas; Genome Canada through Genome British Columbia; The Alberta Science and Research Authority; Agritech Investments Ltd., Dairy Insight, Inc. and AgResearch Ltd., all of New Zealand; the Research Council of Norway; the Kleberg Foundation; and the National, Texas and South Dakota Beef Check-off Funds.

The Bovine HapMap Project was led by Drs Richard Gibbs and Curt Van Tassell of the USDA and Dr Jeremy Taylor of the University of Missouri.

Funding for the Bovine HapMap Project was provided by: American Angus Association, American Hereford Association, American Jersey Cattle Association, AgResearch (New Zealand), Beef CRC and Meat and Livestock Australia for the Australian Brahman Breeders Association, Beefmaster Breeders United, The Brazilian Agricultural Research Corporation (Embrapa), Brown Swiss Association, GENO Breeding and Artificial Insemination Association - Norway, Herd Book/France Limousin Selection, Holstein Association USA, International Atomic Energy Agency - FAO/IAEA Vienna, International Livestock Research Institute – Kenya, Italian Piedmontese Breeders - Parco Tecnologico Padano, Italian Romagnola Society - Università Cattolica del Sacro Cuore, Livestock Improvement Corporation, Meat & Wool New Zealand. North American Limousin Foundation, Red Angus Association of America, The Roslin Institute for UK Guernsey, and Sygen (now Genus).

Lisa Palu | EurekAlert!
Further information:
http://www.csiro.au

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>