Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demystifying yield fluctuations for greenhouse tomatoes

16.04.2010
Model based on solar radiation accurately predicts yields

Growing tomatoes is not always easy. In many parts of the world summers are too hot to grow tomatoes in greenhouses, even those with intricate cooling systems.

In cooler climates where tomatoes are grown year-round in production greenhouses, yield fluctuations are still challenging for producers who need to fulfill orders and predict labor costs. Finding accurate methods for predicting greenhouse tomato yields is at the forefront of growers' concerns.

A new research study may take the speculation out of yield predictions and offer help for tomato producers. Tadahisa Higashide, a scientist at Japan's National Agricultural and Food Research Organization, published the study in a recent issue of HortScience. The research indicated that fluctuations in fruit number and yield under greenhouse conditions could be predicted on the basis of fluctuations in solar radiation.

According to the Higashide, development of an accurate method to predict weekly fluctuation in tomato yield, especially during summer, is still a big challenge; tomato yields fluctuate almost simultaneously in many fields in an area, although growers, greenhouses, plant growth stages, and crop management differ. Yield fluctuations can cause prices to fluctuate, purchasers to look to competing suppliers, and inadequate distributions of labor—complications that have an impact on revenues and consumer satisfaction. Accurate prediction of yield fluctuations would help growers revamp their marketing approaches (e.g., cooperative shipping with a grower in another area to fill supply gaps) or implement environmental controls in their greenhouses.

The study was designed to develop a method for predicting fluctuations in weekly tomato yield under high temperatures. Higashide investigated the relationships between environmental data and tomato yield and whether these relationships could be used to predict yield fluctuations. The experiments were conducted using the popular Japanese tomato cultivar 'Momotaro 8' grown in two commercial "sloped" greenhouses in Higashimiyoshi, Tokushima, Japan.

Fluctuations in yield were caused mainly by the variation in fruit number rather than fruit weight. "The number of harvested fruit and the yield of plants grown in summer and fall were significantly and positively correlated with solar radiation during the days before anthesis (the period during which a flower is fully open or in full bloom)", stated Higashide.

Although the fruit number and yield were also significantly correlated with air temperature before anthesis, the correlations were weaker than the correlations with solar radiation. There was no significant correlation between the air temperature in the periods encompassing 3 weeks before harvesting and the fruit number and yield. Therefore, fluctuations in fruit number and yield could be predicted by a model based on the solar radiation from 4 to 10 days before anthesis.

Higashide summarized the experiment's outcomes, noting that fluctuations in the weekly fruit number and yield for tomatoes grown in greenhouses during the summer and fall were strongly and significantly correlated with fluctuations in solar radiation during the periods encompassing 12 to 0 days before anthesis. "On the basis of fluctuations in solar radiation, fluctuations in fruit number and yield under these conditions could be predicted. Thus, solar radiation at the period before anthesis was one of the important factors in prediction of tomato yield under warm greenhouse conditions."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/7/1874

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>