Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous nitrogen pollution could be halved

13.05.2014

The most important fertilizer for producing food is, at the same time, one of the most important risks for human health: nitrogen.

Chemical compounds containing reactive nitrogen are major drivers of air and water pollution worldwide, and hence of diseases like asthma or cancer.

If no action is taken, nitrogen pollution could rise by 20 percent by 2050 in a middle-of-the-road scenario, according to a study now published by scientists of the Potsdam Institute for Climate Impact Research. Ambitious mitigation efforts, however, could decrease the pollution by 50 percent. The analysis is the very first to quantify this.

“Nitrogen is an irreplaceable nutrient and a true life-saver as it helps agriculture to feed a growing world population – but it is unfortunately also a dangerous pollutant,” says Benjamin Bodirsky, lead-author of the study.

In the different forms it can take through chemical reactions, it massively contributes to respirable dust, leads to the formation of aggressive ground-level ozone, and destabilizes water ecosystems. Damages in Europe alone have been estimated at around 1-4 percent of economic output, worth billions of Euro.

About half of these nitrogen pollution damages are from agriculture. This is why the scientists ran extensive computer simulations to explore the effects of different mitigation measures.

***Both farmers and consumers would have to participate in mitigation***

“It became clear that without mitigation the global situation may markedly deteriorate as the global food demand grows,” says Bodirsky, who is also affiliated to the International Center for Tropical Agriculture, Colombia (CIAT). “A package of mitigation actions can reverse this trend, yet the risk remains that nitrogen pollution still exceeds safe environmental thresholds.”

Only combined mitigation efforts both in food production and consumption could substantially reduce the risks, the study shows. Currently, every second ton of nitrogen put on the fields is not taken up by the crops but blown away by the wind, washed out by rain or decomposed by microorganisms.

To reduce losses and prevent pollution, farmers can more carefully target fertilizer application to plants’ needs, using soil measurements. Moreover, they should aim at efficiently recycling animal dung to fertilize the plants. “Mitigation costs are currently many times lower than damage costs,” says co-author Alexander Popp.

“For consumers in developed countries, halving food waste, meat consumption and related feed use would not only benefit their health and their wallet,” Popp adds. “Both changes would also increase the overall resource efficiency of food production and reduce pollution.”

***“Health effects of nitrogen pollution more important than climate effects”***

“The nitrogen cycle is interwoven with the climate system in various ways,” Hermann Lotze-Campen points out, co-author of the study and co-chair of PIK’s research domain Climate Impacts and Vulnerabilities. Nitrous oxide, or laughing gas, on the one hand is one of the major greenhouse gases. On the other hand, nitrogen containing aerosols scatter light and thereby cool the climate.

And as fertilizing nutrient, nitrogen enhances the growth of forests which binds CO2. “Currently the health effects of nitrogen pollution are clearly more important, because the different climate effects largely cancel out,” says Lotze-Campen. “But this may change – hence limiting nitrogen would have the double benefit of helping our health today and avoiding climate risks in the future.”

Article: Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M. (2014): Reactive nitrogen requirements to feed the world in 2050 and potentials to mitigate nitrogen pollution. Nature Communications [DOI:10.1038/ncomms4858]

Weblink to Nature Communications where the article will be published: http://www.nature.com/naturecommunications

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | PIK Potsdam

Further reports about: Climate agriculture farmers microorganisms nitrogen nutrient reactions

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>