Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop Rotation with Nematode-Resistant Wheat Can Protect Tomatoes

15.05.2013
In a study published online today in Crop Science, scientists describe a nematode-resistant wheat. But while the wheat carries the resistance to the pest, the benefits are actually seen in the crop that is grown after it.

Root-knot nematodes cause crop losses around the world, and they can be difficult to control. In order to reproduce, nematodes need to infect a living plant root.

Once they are present in soil, they can survive winter in a fallow field and infect plants during the next growing season. Trap crops – unsuitable hosts that “trick” the nematodes into starting their life cycle but then prevent them from reproducing – are often a better option than leaving the field fallow.

“Once nematodes commit to being a parasite, they have to complete their life cycle,” explains Valerie Williamson, lead author of the study and professor at University of California – Davis. “If they don’t reproduce, the population dies out.”

Trap crops can reduce the number of parasites in the soil and lessen the effects of the pests on the next crop in the rotation. But crops resistant to nematodes can be hard to find due to the pest’s wide range of hosts, and trap crops are often plants that are less valuable to farmers. In the present study, researchers found a resistant strain of wheat that can reduce nematode numbers in soil and protect the next rotation of tomato plants.

“What’s nice about this finding is that wheat is what farmers often use as a rotation crop in California,” says Williamson.

The researchers were surprised to find the resistant wheat. They had tried a number of different rotation crops before turning to wheat. Wheat breeder and senior co-author Jorge Dubcovsky then gave Williamson a strain of wheat called Lassik. Lassik is similar to wheat that is commonly grown, but it has a slight difference. A small segment of genes from another wheat strain relocated, through breeding, into Lassik.

This relocated segment has no effect on yield or behavior of the crop, but Williamson and her co-authors found that it did have a benefit – it made the wheat resistant to nematodes. “Dubcovsky gave us this strain because it had other resistance genes in it,” says Williamson. “It turned out, to our surprise, that it also had nematode resistance.”

Once they realized that the Lassik wheat was more resistant to nematodes than the wheat normally grown, the research team validated the source of the resistance by comparing pairs of strains with and without the relocated segment. Then to determine if rotating the resistant wheat with tomato plants would help protect the tomatoes, the authors grew Lassik wheat and used some of the soil to plant tomato seedlings. The wheat had the effect they were hoping for – the tomatoes grown in soil from the resistant wheat plots were less damaged by nematodes.

“If farmers use a wheat that does not have the resistant genes, more nematodes survive, and they’ll be there when they plant tomatoes,” explains Williamson. “But if they plant the resistant wheat, there won’t be as many nematodes in the soil.” Dubcovsky noted that the last three bread wheat varieties released by the University of California Wheat breeding program and the USDA- supported Triticeae-CAP project all carry this resistance gene and are readily available to growers.

The results from the study offer a promising option for reducing nematode damage. The next step is to verify the findings on a larger scale. Williamson and her team grew plants both in greenhouses and in small microplots. They are now anticipating that agronomists will try the rotation on a field scale.

“We wanted to get the results out there so that people who work in the field, farm advisers for example, can see if it works in practice as well as it did in a controlled experiment.”

View the abstract at: http://dx.doi.org/doi:10.2135/cropsci2012.12.0681

To obtain a copy of the complete article, please contact Madeline Fisher at 608-268-3973, mfisher@sciencesocieties.org or Caroline Schneider at 608-268-3976, cschneider@sciencesocieties.org.

The corresponding author, Valerie Williamson, can be contacted at vmwilliamson@ucdavis.edu.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/abstracts/0/0/cropsci2012.12.0681.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Valerie Williamson | Newswise
Further information:
http://www.ucdavis.edu
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>