Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Control of Reproduction in Trout and Salmon May be in Aquaculture's Future

22.07.2010
Fast-growing farm-raised salmon and trout that are sterile can now be produced using a method developed by Agricultural Research Service (ARS) scientists. Blocking reproduction can enhance growth, and is important for fish being reared in situations where reproduction is undesirable.

The method allows researchers to more efficiently and reliably produce fish that have three sets of chromosomes, instead of the usual two sets. Fish with the extra set of chromosomes can't reproduce, so the energy from the food they eat is shifted from reproduction to growth. Also, cultured fish that are not capable of breeding with native populations can be stocked in natural waters.

Bigger fish for consumers and sterile fish for producers and anglers are the goals of ARS scientists who are working with the aquaculture industry on genetic methods to more efficiently produce fish that grow faster on less feed and can't reproduce in the wild.

William K. Hershberger, former research leader at the ARS National Center for Cool and Cold Water Aquaculture (NCCCWA) in Leetown, W.Va., and NCCCWA biologist Mark Hostuttler investigated the earliest stages of fish development, from fertilized egg to the two-cell stage, and developed a more effective way to produce rainbow trout that have four sets of chromosomes. Those trout are then crossed with typical fish that have two chromosome sets, yielding offspring that have the desired three sets of chromosomes.

Now, ARS fish physiologist Gregory Weber and Hostuttler have improved on that method, and preliminary studies have expanded its application to Atlantic salmon, brook trout and brown trout. They are also in the process of breeding these fish for experiments that will determine whether these three-chromosome-set fish are good performers in terms of production traits such as growth to market size, stress tolerance, and disease resistance.

Additionally, Weber and Hostuttler have developed a way to validate chromosome status on 20 fish at a time, instead of just one.

ARS is the primary intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Sharon Durham | Newswise Science News
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research Aquaculture's Future Chromosome Control NCCCWA Reproduction USDA

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>