Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coffee: better harvest thanks to biodiversity

05.02.2014
Bees, birds, and bats make a huge contribution to the higher yields produced by coffee farmers around Mount Kilimanjaro – an example of how biodiversity can pay off.

A lot of coffee is grown on Kilimanjaro, the East African massif almost 6000 meters high. The most traditional form of cultivation can be found in the gardens of the Chagga people: there the sun-shy coffee trees and many other crop plants thrive in the shade of banana trees and other tall trees.


A fine net keeps pollinators away from coffee blossoms. This is fairly detrimental to the quality of the coffee.

(Photo: Alice Classen)


If birds and bats are prevented by a net from feeding on pests on coffee trees, this lowers the yield.

(Photo: Alice Classen)

However, the majority of the coffee is grown on plantations. Although these also have many shade trees still, they are being chopped down in ever greater numbers. The reason for this is that “conventional coffees, which rely on shade, are increasingly being replaced by varieties that tolerate lots of sun and are more resistant to fungi,” explains Professor Ingolf Steffan-Dewenter, a tropical ecologist at the University of Würzburg's Biocenter.

The hope is that this crop intensification will lead to higher yields. However, it is possible that the harvest on the plantations will be no better in the end: the very fact that there will hardly be any shade trees left there will mean that the habitat may become scarce for animals that pollinate the coffee, eat pests, and thereby help to improve the yield.

Approach taken by the researchers

Steffan-Dewenter and his doctoral student Alice Classen therefore wanted to know what contribution bees, birds, bats, and other animals make to pollination and to biological pest control in the coffee fields. They also wanted to find out whether intensified farming has an impact on these free services provided by the ecosystem. They worked closely on this with teams from the Biodiversity and Climate Research Centre (Frankfurt/Main) and the Institute of Experimental Ecology at the University of Ulm.

The tropical experts conducted experiments in all three cultivation systems (Chagga gardens, shade plantations, and sun plantations) in twelve areas on the slopes of Mount Kilimanjaro in Tanzania. They used nets to deny animals access to the coffee blossoms or even to entire coffee trees. Then they examined, among other things, how the presence or absence of the “animal service providers” affects the quantity and quality of the harvest.

Role played by animals in coffee-growing

It was revealed that where birds and bats had access to the plants, there was almost a ten percent higher fruit set. “We believe that this is down to the fact that the animals destroy pests that would otherwise feed on the coffee plants,” says Julia Schmack (Frankfurt). This reduction in leaf damage probably leads to fewer coffee cherries falling from the tree before they are ripe.

Looking at pollination was also interesting. Bees and other insects should actually be redundant here, since the examined coffee variety, Coffea arabica, can also self-pollinate. Yet, the researchers found that if pollinators have access to the coffee blossoms, the cherries are around seven percent heavier, which signifies that the coffee is of higher quality.

“So, the effects of pollination and pest control complement each other perfectly; both are important for higher yields,” says Steffan-Dewenter: Birds and bats provide more cherries; bees and other pollinators ensure better quality.

Same effect with all cultivation systems

To the surprise of the researchers, intensified farming does not have a negative effect: the impact that the services provided by the animals had on the harvest was equally good in all three cultivation systems, even in the sun plantations.

“We put this down to the mosaic landscape structure on Mount Kilimanjaro with its gardens, forests, and grasslands,” says the doctoral student, Alice Classen. Given that much of the landscape is divided into small parcels, pollinators, birds, and bats could still find a sufficient habitat with nesting places and swarm out from there into the plantations.

Shaky foundations in sun plantations

“However, it is likely that these seemingly stable ecosystem services rest on shaky foundations in the sun plantations,” believe the Würzburg scientists. This is because they registered virtually only one type of visitor to the blossoms there: honey bees.

On the coffee blossoms in the Chagga gardens, on the other hand, they also sighted wild bees, hoverflies, and butterflies. So, if honey bee numbers were to fall, as they might in a year that is climatically unfavorable for these insects, this could reduce the harvest in the sun plantations.

Findings of a DFG research group

These findings have been published in the journal “Proceedings of the Royal Society B”. They have been produced by a research group that focuses on the ecosystems of Mount Kilimanjaro and is funded by the German Research Foundation (DFG).

Homepage of the DFG research group:
http://www.kilimanjaro.biozentrum.uni-wuerzburg.de
“Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields.” Alice Classen, Marcell K. Peters, Stefan W. Ferger, Maria Helbig-Bonitz, Julia Schmack, Genevieve Maassen, Matthias Schleuning, Elisabeth K. V. Kalko, Katrin Böhning-Gaese, Ingolf Steffan-Dewenter, Proceedings of the Royal Society B, 2014, February 5, DOI 10.1098/rspb.2013.3148

Contact

Alice Classen, Department of Zoology III (Animal Ecology and Tropical Biology), Biocenter, University of Würzburg, T +49 (0)931 31-82793, alice.classen@stud-mail.uni-wuerzburg.de

Robert Emmerich | Universität Würzburg
Further information:
http://www.uni-wuerzburg.de
http://www.kilimanjaro.biozentrum.uni-wuerzburg.de

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>