Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change may create price volatility in the corn market, say Stanford and Purdue researchers

23.04.2012
By the time today's elementary schoolers graduate from college, the U.S. corn belt could be forced to move to the Canadian border to escape devastating heat waves brought on by rising global temperatures.

If farmers don't move their corn north, the more frequent heat waves could lead to bigger swings in corn prices – "price volatility" – which cause spikes in food prices, farmers' incomes and the price livestock farmers and ethanol producers pay for corn.


America's No. 1 crop could see its prime growing region shift to the Canadian border or its price volatility increase sharply within 30 years. A new Stanford study points to climate change as the cause. Credit: Doug Wilson, Agricultural Research Service, USDA

A study published April 22 in the journal Nature Climate Change shows for the first time climate change's outsized influence on year-to-year swings in corn prices.

Researchers from Stanford and Purdue universities found that climate change's impact on corn price volatility could far outweigh the volatility caused by changing oil prices or government energy policies mandating biofuels production from corn and other crops.

"Frankly, I was surprised that climate had the largest effect of these three influences," said Noah Diffenbaugh, an assistant professor of environmental Earth system science at Stanford's School of Earth Sciences and a fellow at the Stanford Woods Institute for the Environment. "These are substantial changes in price volatility that come from relatively moderate global warming."

The study, based on economic, climatic and agricultural data and computational models, finds that even if climate change stays within the internationally recognized target limit of 3.6 degrees Fahrenheit above pre-industrial levels, the temperature changes could still make damaging heat waves much more common over the U.S. corn belt.

"Severe heat is the big hammer," Diffenbaugh said. "Even one or two degrees of global warming is likely to substantially increase heat waves that lead to low-yield years and more price volatility."

The researchers calculate that when climate change's effects are coupled with federal mandates for biofuel production, corn price volatility could increase sharply over the period from 2020 to 2040. Increasing heat waves will lead to low-yield years, and government-mandated corn sales to ethanol producers limit the market's ability to buffer against low-yield years.

"By limiting the ability of commodity markets to adjust to yield fluctuations, biofuels mandates work in exactly the wrong direction," said Thomas Hertel, a professor of agricultural economics at Purdue University who participated in the study.

"Our results suggest that energy policy decisions are likely to interact with climate change to affect corn price volatility, and that the market effect of a binding biofuel mandate is likely to intensify as the climate warms," Diffenbaugh said.

Diffenbaugh and Hertel also explored the potential of farmers to adapt to the changing climate. They found that, unless corn farmers increase their crops' heat tolerance by as much as 6 degrees Fahrenheit, the areas of high corn production would have to move northward from the current U.S. corn belt to near the Canadian border in order to avoid excessive heat extremes.

"Our goal was to explore the interacting influences of climate, energy markets and energy policy," said Diffenbaugh. "It is clear from our results that those policy decisions could strongly affect the impacts that climate change has on people. And, importantly, we also identify potential opportunities for reducing those impacts through adaptation."

This article was written by Rob Jordan of the Stanford Woods Institute for the Environment.

Rob Jordan | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Agricultural and Forestry Science:

nachricht AI goes underground: root crop growth predicted with drone imagery
18.06.2020 | International Center for Tropical Agriculture (CIAT)

nachricht Cell wall research reveals possibility of simple and sustainable method to protect crops
16.06.2020 | American Phytopathological Society

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>