Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your Christmas tree has seven times more DNA than you do - time to map it

10.12.2009
Take a close look at your Christmas tree - it has seven times more genetic material (DNA) than you do!

Why this is so is still largely unknown, but now the DNA of the spruce is going to be mapped by Swedish researchers from Umeå Plant Science Center (a collaboration between the Swedish University of Agricultural Sciences (SLU) and Umeå University), the Royal Institute of Technology (KTH), and the Karolinska Institute (KI), with the aid of a SEK 75 million grant from the Knut and Alice Wallenberg Foundation.

Coniferous trees have dominated major parts of the earth for hundreds of millions of years. When primitive batrachians crawled around Carbon Age forests, they were surrounded by conifers. Conifers survived the geological disaster 250 million years ago that paved the way for the age of the dinosaurs. When the impact of a meteorite wiped out the dinosaurs, conifers lived on. Today conifers dominate major regions of the earth - the combined weight of all the people on earth is less than that of the conifers in Jämtland County in central Sweden.

Apparently conifers managed as early as 300 million years ago to create an extremely successful genetic make-up that has allowed them to dominate the globe, but what does it look like? All conifers have twelve chromosomes, but they are extremely large: a cell from a spruce or pine has seven times as much DNA as a human cell does. Why do conifers have so much DNA? Does it have to do with their having thrived for millions of years on earth, and do they really have more genes than you and I, or are their genes simply more 'diluted'? This is not known, but their enormous amount of DNA has entailed that scientists have not dared to tackle a mapping of the complete genome of coniferous trees.

Now a Swedish research team, consisting of scientists from Umeå Plant Science Center (UPSC), a research center that is run jointly by Umeå University and SLU, and from KTH and KI, both in Stockholm, will finally be addressing this huge challenge with the aid of a grant of SEK 75 million from the Knut and Alice Wallenberg Foundation.

The spruce is Sweden's ecologically and economically most important plant. Spruce dominates the forests of southern and central Sweden and is the most important raw material for the Swedish forestry industry.

"The genetics of the spruce are truly exciting," says the project director, Professor Pär Ingvarsson at UPSC. "Genetically, trees differ tremendously from each other, and while Swedish forest genetics has always been prominent, this constitutes a giant step forward in the work to achieve tree nursery material that is adapted to the very different conditions that prevail in our country, above all in the time of climate change we are facing."

"The fact that the Swedish spruce will be the first conifer to have its genome mapped is extremely important to both Swedish forestry research and the forestry industry," says Professor Ove Nilsson at UPSC, who chairs the project's steering group. "A complete mapping of the genes of the spruce will revolutionize Swedish tree research and enable us to make more efficient use of wood raw material."

"For example, it will provide us with the possibility of developing genetic tests for the various properties of trees, such as the fuel value of the wood, or the trees' frost resistance and resistance to diseases, just as the mapping of the human genome has made this possible in medicine," says Stefan Jansson, a professor at UPSC.

These scientists are now able to take on this challenge largely because DNA sequencing technology has been developed so extremely rapidly.

"It would have been impossible to tackle this project just a couple of years ago," says Professor Joakim Lundeberg, KTH. The government's major allocation to the Science for Life Laboratory, which is slated to be northern Europe's largest center for genome research, gives us access to this equipment, and the spruce project will be the Laboratory's first flagship project.

"Many other Swedish scientists will benefit from this project, so the eventual aggregate impact will be huge," says Jan Stenlid, a professor at SLU in Uppsala. "For instance, we will have an entirely new capacity to understand and thereby combat two major scourges for Swedish forestry, root rot and the pine weevil."

The project is projected to take four to five years, and besides the eight Swedish researchers - Björn Andersson, KI, Rishikesh Bhalerao, UPSC, Rosario Garcia Gil, UPSC, Pär Ingvarsson, UPSC, Stefan Jansson, UPSC, Joakim Lundeberg, KTH, Ove Nilsson, UPSC, and Björn Sundberg, UPSC - Canadian, Italian, and Belgian researchers will contribute to the project, which, as far we know, is the largest project in the world to tackle the species that has the largest DNA.

For further information please contact:

Ove Nilsson, mobile: +46 (0)70-286 90 82
ove.nilsson@genfys.slu.se
Pär Ingvarsson, mobile: +46 (0)70-848 59 77
par.ingvarsson@emg.umu.se
Stefan Jansson, mobile: +46 (0)70- 677 23 31
stefan.jansson@plantphys.umu.se
Joakim Lundberg, mobile: +46 (0)70-458 23 46
joakiml@biotech.kth.se
Pressofficer Carin Wrange; Carin.Wrange@adm.slu.se;+46-70 247 84 22

Ingemar Björklund | idw
Further information:
http://www.vr.se

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>