Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs have key role in farming approach to storing CO2 emissions

18.06.2012
Tiny microbes are at the heart of a novel agricultural technique to manage harmful greenhouse gas emissions.

Scientists have discovered how microbes can be used to turn carbon dioxide emissions into soil-enriching limestone, with the help of a type of tree that thrives in tropical areas, such as West Africa.

Researchers have found that when the Iroko tree is grown in dry, acidic soil and treated with a combination of natural fungus and bacteria, not only does the tree flourish, it also produces the mineral limestone in the soil around its roots.

The Iroko tree makes a mineral by combining calcium from the earth with CO2 from the atmosphere. The bacteria then create the conditions under which this mineral turns into limestone. The discovery offers a novel way to lock carbon into the soil, keeping it out of the atmosphere.

In addition to storing carbon in the trees' leaves and in the form of limestone, the mineral in the soil makes it more suitable for agriculture.

The discovery could lead to reforestation projects in tropical countries, and help reduce carbon dioxide emissions in the developing world. It has already been used in West Africa and is being tested in Bolivia, Haiti and India.

The findings were made in a three-year project involving researchers from the Universities of Edinburgh, Granada, Lausanne and Neuchatel, Delft University of Technology, and commercial partner Biomim-Greenloop. The project examined several microbiological methods for locking up CO2 as limestone, and the Iroko-bacteria pathway showed best results. Work was funded by the European Commission under the Future & Emerging Technologies (FET) scheme.

Dr Bryne Ngwenya of the University of Edinburgh's School of GeoSciences, who led the consortium, said: "By taking advantage of this natural limestone-producing process, we have a low-tech, safe, readily employed and easily maintained way to lock carbon out of the atmosphere, while enriching farming conditions in tropical countries."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Microalgae food for honey bees
12.05.2020 | US Department of Agriculture - Agricultural Research Service

nachricht Global trade in soy has major implications for the climate
07.05.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>