Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing precision farming to open field crops

19.09.2013
New system unifies profitable farming and environmental protection

How much water and fertilizer needs agricultural land for a successful harvest? Which nutrients are in the soil, which ones are lacking? ttz Bremerhaven and nine partners of the EU-funded project “OPTIFERT” present the development of a fully integrated on-demand fertigation system.


A unit of three chips for the measurement of NO3, NH4, K and PO4 (chip size 16 mm x 26 mm).
Foto: OPTIFERT Projekt


OPTIFERT mixing and dosing unit at the test site.
Foto: OPTIFERT Projekt

A soil nutrient sensor for the combined measurement of macronutrients at the field will correct the required crop growth model embedded in a fertigation software. The calculated fertilizer requirements will be delivered by a mixing and dosing unit specifically developed for open field crops.

In modern agriculture the amount of nutrients in soil is commonly adjusted by the application of fertilizers. The fertilizer dose has to be carefully adapted to the plant demands, since under-supply as well as over-supply lead to reduced yield. In addition, excessive use seriously harms the environment if fertilizers are not taken up by crops but get washed into ground water. In order to apply the appropriate amount of fertilizers, precise knowledge of nutrient concentrations in the soil and plant needs is required.

At the moment open field crops are fertilized using slow-dissolving solid fertilizer, applied while sowing in an experience-based quantity. Once the fertilizer is applied, the farmer has no control on the rate in which it is dissolved and so when it is available for the plants, or has the possibility of correcting the dose during the growth of the crop.

A system for calculating and applying on-demand fertilizers in open field crops, together with a fast and simple method for the routine surveillance of these nutrients is not yet available. “A system like this can also help us farmers to save time. We can control it with the computer in our office, and that way we have more time to do other things equally important.” Frank Hausmann, Farm Manager at the OPTIFERT test site.

Fertigation system comes with three modules

The full fertigation system contains three modules: composed of first: A soil nutrient sensor system for the combined measurement of NO3, NH4, K and PO4 at the field. For the measurement, a soil sample is suspended in a universal extraction liquid. After filtration, the amount of dissolved nutrients is measured in this liquid. In this way, only a single extraction procedure followed by a single measurement is required, minimizing the work for the generation of nutrient concentration maps and depth profiles.

Second: A software system which will receive the sensor data and process it together with crop growth models and weather data to calculate the required amount of fertilizers for each growth stage.

Third: A mixing and dosing unit, designed specifically for the requirements of an open field, and prepared to dissolve any needed fertilizer combination. The dosing unit can be coupled with any standard irrigation system, adapting the dose not only to the required amount of nutrients for each crop period but also to dynamically adapt to the variation of irrigation rate.

Project results

The three developed prototypes have been tested in a corn field in Brandenburg, Germany, during the season 2013. 25 Ha test site in this field has been fertigated using the OPTIFERT prototypes. The soil and plants have been monitored and analysed periodically during the whole season, as well as neighbour 25Ha reference test, which was fertilized under standard practice. Biomass samples taken at the end of August show 9% yield increase on the OPTIFERT test site. The performance of prototypes and test field have proven satisfactory.

The following partners are involved in the OPTIFERT project. Research partners: Vienna University of Technology (Austria), University of Bremen (Germany), University of Warmia and Mazury (Olsztyn, Poland), ttz Bremerhaven (Germany). Industrial partners: Pessl Instruments GmbH (Austria), Integrated Microsystems Austria GmbH (Austria), Soil Moisture Sense LTD (Great Britain), Hydro-Air GmbH (Germany), Agrargesellschaft "Niederer Fläming" mbH Petkus (Germany).

Movie about the project on euronews/futuris: Intelligent irrigation: growing green http://www.ttz-bremerhaven.de/en/research/environment/research-projects/1120-optifert.html

ttz Bremerhaven is an innovative provider of research services and operates in the field of application-oriented research and development. Under the umbrella of ttz Bremerhaven, an international team of experts is working in the areas of food, environment and health.

Media Contact:
Christian Colmer
Head of Communications
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Tel.: +49 (0)471 80934 903
Fax: +49 (0)471 4832 129
ccolmer@ttz-bremerhaven.de
www.ttz-bremerhaven.de
www.facebook.com/ttzBremerhaven
www.twitter.com/ttzBremerhaven
www.xing.com/companies/ttzbremerhaven

Christian Colmer | idw
Further information:
http://www.optifert.eu/
http://www.ttz-bremerhaven.de

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>