Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benefits of Bt Corn Go Beyond Rootworm Resistance

08.02.2013
Engineered to produce the bacterial toxin, Bt, “Bt corn” resists attack by corn rootworm, a pest that feeds on roots and can cause annual losses of up to $1 billion. But besides merely protecting against these losses, the Bt trait has also boosted corn yields, in some cases beyond normal expectations. So what makes it so successful?

Fred Below and Jason Haegele of the University of Illinois at Urbana-Champaign set out to answer that question by determining how Bt corn uses nitrogen in the soil. Nitrogen is an important nutrient for corn, and with better root systems, it’s possible that Bt corn uses nitrogen differently than non-resistant strains, the scientists hypothesized, in turn affecting corn production. The study, published today in Crop Science, showed just that – Bt corn had higher yields and used nitrogen more efficiently than non-resistant corn.

With its resistance to corn rootworm, Below explains, Bt corn has healthier and more active roots than corn without the resistance trait. And a better root system can lead to improved function for the plant as a whole.

“If you can protect the investment the plants made in the root system,” explains Below, “you can realize everything that roots do like take up nutrients and water and provide anchorage.”

The researchers conducted experiments over two years, growing resistant and non-resistant crops and applying five different amounts of nitrogen. The resistant corn had higher yields than the non-resistant crops (nearly 21 bushels per acre) and more easily tolerated low nitrogen levels.

More efficient use of nitrogen in the soil would be especially beneficial in areas where nitrogen is lost through heavy precipitation or erosion. Additionally, Bt corn would fare better at current levels of nitrogen use in the United States.

“In 2010, the average nitrogen application rate for corn production was around 140 lb/acre,” say Haegele and Below. “Our study shows that the resistant strains we evaluated would have higher yields at that rate of nitrogen application.”

The healthy roots and efficient nutrient use of Bt corn could lead to changes in management practices that would further increase production. Banded or placed fertility, a method by which a farmer can place fertilizer where the roots are likely to be, would be more effective when used on the robust root system. Additionally, increasing plant populations could further increase yield.

“When you have a higher population of plants, each individual plant has a smaller root system, so that made it difficult to increase plant population when you had insects chewing on the roots,” explains Below. “With the Bt corn, though, you can protect the root system and grow more plants.”

In addition to its utility in crop production, Below is hopeful that Bt corn will open up new avenues of research as scientists begin to better understand root systems. “Plant roots are below ground and are hard to study. It’s a big, unexplored horizon, both in agronomics and crop biology. I think that’s why the trait is of such value.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/abstracts/53/2/585.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Fred Below | Newswise
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>