Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria Living on Old-Growth Trees May Help Forests Grow

25.02.2011
Bacteria living on old-growth trees may help forests grow

Biology researchers discover that bacteria living in mosses on tree branches twice as effective at ‘fixing’ nitrogen as those on the ground

A new study by Dr. Zoë Lindo, a post-doctoral fellow in the Department of Biology at McGill University, and Jonathan Whiteley, a doctoral student in the same department, shows that large, ancient trees may be very important in helping forests grow.

These findings highlight the importance of maintaining the large old-growth trees in the coastal temperate rainforests that stretch from Southern Alaska to Northern California. Lindo’s findings suggest that it is the interactions between old trees, mosses and cyanobacteria, which contribute to nutrient dynamics in a way that may actually sustain the long-term productivity of these forests.

“What we’re doing is putting large old trees into a context where they’re an integral part of what a forest is,” says Dr. Lindo. “These large old trees are doing something: they’re providing habitat for something that provides habitat for something else that’s fertilizing the forest. It’s like a domino effect; it’s indirect but without the first step, without the trees, none of it could happen.”

There are three players in this story: 1) large, old trees; 2) mosses that grow along their branches; and 3) a group of bacteria called cyanobacteria associated with the mosses. The cyanobacteria take nitrogen from the atmosphere and make it available to plants–a process called “nitrogen fixation” that very few organisms can do.

The growth and development of many forests is thought to be limited by the availability of nitrogen. Cyanobacteria in mosses on the ground were recently shown to supply nitrogen to the Boreal forest, but until now cyanobacteria have not been studied in coastal forests or in canopies (tree-tops). By collecting mosses on the forest floor and then at 15 and 30 metres up into the forest canopy, Lindo was able to show both that the cyanobacteria are more abundant in mosses high above the ground, and that they “fix” twice as much nitrogen as those associated with mosses on the forest floor.

Moss is the crucial element. The amount of nitrogen coming from the canopy depends on trees having mosses.

“You need trees that are large enough and old enough to start accumulating mosses before you can have the cyanobacteria that are associated with the mosses,” Lindo said. “Many trees don’t start to accumulate mosses until they’re more than 100 years old. So it’s really the density of very large old trees that are draped in moss that is important at a forest stand level. We surveyed trees that are estimated as being between 500 and 800 years old.”

The research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

For an abstract of the article: http://www.springerlink.com/content/e651740234037w62/

Web page: http://biology.mcgill.ca/grad/zoe/index.html
Lab blog: http://www.ecodrift.blogspot.com/
Contact:
Katherine Gombay
Media Relations
McGill University
514-398-2189
katherine.gombay@mcgill.ca

Katherine Gombay | Newswise Science News
Further information:
http://www.mcgill.ca

More articles from Agricultural and Forestry Science:

nachricht Food for the city – from the city
03.09.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht How the forest copes with the summer heat
29.08.2018 | Universität Basel

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>