Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Intelligence in agriculture and environmental management

25.09.2019

Climate change affects our environment in many different ways: crop failure, river shipping being hampered due to low water, floods and storm damage in the cities are only a few examples of the factors that have been increasingly affected our lives in recent years.

Researchers at Ruhr-Universität Bochum (RUB) are developing digital applications intended to make it easier for various actors to better cope with weather events in the future.


Benjamin Mewes (left) and Henning Oppel were awarded for their project “Okeanos” at Junge Spitzenforscher Forum (Forum for Excellent Young Scientists) in 2019.

Foto: Roberto Schirdewahn

Dr. Benjamin Mewes and Dr. Henning Oppel from the Institute of Engineering Hydrology and Water Resource Management are deploying Artificial Intelligence in their joint project “Okeanos”. While Benjamin Mewes focuses on irrigated agriculture, Henning Oppel is figuring out how to better predict flood events.

Farmers could save a lot of water

Agriculture is the largest consumer of fresh water globally. “Most of the time, farmers employ their expertise and experience to decide when and how to water their soil,” says Mewes. However, this results in hundreds of thousands litres of this valuable resource being wasted.

This could be remedied by a computer software that provides a recommendation for action based on all the important factors for irrigation – or better still, controls the irrigation systems itself.

Autonomous software units

Mewes’ solution deploys an agent-based soil/water model that he developed himself. Agents are software units that act autonomously and make decisions in accordance on a set of rules and that can represent complex systems and chains through their interaction with each other.

“The model is dynamic, can adapt to individual conditions, and it thus offers every farmer a tailor-made irrigation strategy,” as Mewes outlines the benefits.

Enabling precise flood warnings

Henning Oppel researches into a water management problem of a very different kind. He intends to pave the way for more precise flood warnings with the aid of machine learning.

In order to predict how the water level of a river will change, it is not enough to simply consider the local processes at the location for which a flood forecast is required. Rather, it is necessary to take the thousands of square kilometres that define a river’s catchment into consideration, including a wealth of different surfaces such as asphalt, forest soil or gravel, as water moves at different speeds on all of them.

Interesting for insurance companies and flood reporting services

“Due to the large number of active processes, it is difficult to apply a single process equation. Machine learning enables us to develop new process descriptions and add to existing concepts,” says Oppel.

A number of target groups might benefit from an improved solution in the form of an app: flood reporting services, insurance companies, fire brigades and technical assistance services, to name but a few.

Detailed article in the science magazine Rubin

You can find a detailed article on this topic in the science magazine Rubin. Texts on the website and images on the download page are free to use for editorial purposes, provided the relevant copyright notice is included.

Wissenschaftliche Ansprechpartner:

Dr. Benjamin Mewes
Institute of Engineering Hydrology and Water Resource Management
Department of Civil and Environmental Engineering
Ruhr-Universität Bochum
Phone: +49 234 32 25896
Email: benjamin.mewes@rub.de

Dr. Henning Oppel
Institute of Engineering Hydrology and Water Resource Management
Department of Civil and Environmental Engineering
Ruhr-Universität Bochum
Phone: +49 234 32 25874
Email: henning.oppel@rub.de

Weitere Informationen:

https://news.rub.de/english/2019-09-25-water-resource-management-ai-has-found-it...

Arne Dessaul | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht No soil left behind: How a cost-effective technology can enrich poor fields
10.10.2019 | International Center for Tropical Agriculture (CIAT)

nachricht Cheap as chips: identifying plant genes to ensure food security
09.10.2019 | University of Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>