Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals and fungi enhance the performance of forests

01.08.2018

A new study shows that, in addition to the diversity of tree species, the variety of animal and fungus species also has a decisive influence on the performance of forests. Forest performance comprises many facets besides timber production, such as carbon storage and climate regulation. The study is based on ten years of research in species-rich subtropical forests. A team of researchers led by the German Centre for Integrative Biodiversity Research (iDiv) and the Martin-Luther-University Halle-Wittenberg has published the results in the new issue of Nature Communications.

They illustrate that biodiversity must be viewed as a whole in order to maintain the performance of forests.

There is a global concern that the loss of biodiversity caused by people is impairing the functioning of our cultural and natural landscapes. In our forests, trees are the most conspicuous and prominent organisms. The consequences of reduced tree species diversity are therefore comparatively easy to grasp.


Subtropical forests like this one in East China (Gutianshan Reserve) have a high species richness.

Sabine Both


Spiders and other animals are important for forest ecosystems.

Jula Zimmermann

However, it is much more difficult to take into consideration the diversity of the thousands of sometimes tiny animal and micro-organism species that perform important tasks in forests as herbivores, pest controllers or recycling experts. Therefore, the effects of a loss of this species diversity have so far been difficult to quantify.

After years of dedication, a team of German, Chinese, Swiss and American researchers has now succeeded in doing this for the first time for particularly species-rich, semi-natural forests in the subtropics of China.

The research group has not only studied the enormous species diversity of beetles, spiders, ants, woodlice and fungi in these forests, but at the same time, they investigated a variety of processes that are essential for the functioning of the forests. These processes include the growth of timber, the prevention of soil erosion, the recycling of nutrients or the biological control of potential pests.

“Our analyses show that the diversity of animal and fungal species affects numerous important processes – such as the availability of nutrients for tree growth,” said Dr Andreas Schuldt, first author of the study, from the German Centre for Integrative Biodiversity Research (iDiv) and the Martin-Luther-University Halle-Wittenberg. “To understand why and how a loss of biodiversity affects these forests, it is not enough to concentrate solely on the trees and their species diversity.”

The species richness of herbivores and their competitors was also important, an important finding with regard to the expected intensification and the possible prevention of pest infestation with progressive climate change. Furthermore, besides animals and fungi, the researchers found that the multifunctionality of forest stands is influenced not so much by the number of tree species as by their functional properties and the resulting composition of different types of tree species.

“Our previous knowledge on the relationships between multifunctionality and biodiversity mainly comes from comparatively species-poor forests in Europe and North America,” said Prof Helge Bruelheide, spokesperson of the research group and senior author of the study. “We can now show for the first time that such relationships in the extremely species-rich subtropics and tropics follow their own dynamics. This is important to understand because these forests are of great importance for global biogeochemical cycles and for us humans.”

The results of the study also allow deductions for the management of forests under ever-changing environmental conditions and therefore provide important basic data. These insights were made possible by the many years of funding of biodiversity research and the project by the German Research Foundation (DFG).

Wissenschaftliche Ansprechpartner:

PD Dr. Andreas Schuldt
German Centre for Integrative Biodiversity Research (iDiv)
Martin Luther University Halle-Wittenberg
Phone: +49-341-973-3232
https://www.idiv.de/groups_and_people/employees/details/eshow/schuldt_andreas.ht...

Prof. Dr. Helge Bruelheide
Professor for Geobotany, Institute of Biology, Martin Luther University Halle Wittenberg
Co-Director of iDiv
Phone: +49-345–55-26222
http://www.botanik.uni-halle.de/geobotanik/helge_bruelheide/?lang=en
https://www.idiv.de/en/groups_and_people/employees/details/eshow/bruelheide_helg...

Originalpublikation:

Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn1 P Liu X, Ma KP, Niklaus PA, Pietsch KA, Purahong W, Scherer-Lorenzen M, Schmid B, Scholten T, Staab M, Tang ZY, Trogisch S, von Oheimb G, Wirth C, Wubet T, Zhu CD, Bruelheide H (2018): Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications 9, Article number: 2989 (2018). Open. Published: 31 July 2018
DOI: 10.1038/s41467-018-05421-z
https://www.nature.com/articles/s41467-018-05421-z

Weitere Informationen:

https://www.idiv.de/de/forschung/forschungsplattformen/bef_china.html
https://www.idiv.de/news/news_single_view/news_article/animals_and.html

Tilo Arnhold | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Giving a chip about masa
18.07.2019 | American Society of Agronomy

nachricht Global farming trends threaten food security
11.07.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>