Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research zeroes in on potato disease insect

28.06.2012
Analysis of psyllid migration could help producers with management decisions

Do potato psyllids migrate from one location to the next, starting in northern Mexico and moving northward as the potato season progresses, or are psyllid populations local?

Knowing whether the insects are migratory or local could help more efficiently manage the insects which are increasingly inflicting damage on the country's potato industry, according to scientists working on the project.

A study that is being done as a part of the national Zebra Chip Specialty Crop Research Initiative involves Dr. Arash Rashed, Texas AgriLife Research vector ecologist, and Dr. Charlie Rush, AgriLife Research plant pathologist in Amarillo and lead on the national initiative.

The bacterial pathogen carried by the psyllid is Candidatus Liberibacter solanacearum. When the psyllid feeds on a potato plant, the bacteria is transmitted into the plant and causes the disease known as zebra chip of potato, Rush said.

While it has no effect on human health, zebra chip can cause entire loads of potatoes to be rejected by the potato chip industry because of the negative effect it has on chips and fries, which appear as burned when fried, he said.

"It is generally believed that psyllids migrate from Mexico to the Canadian border," Rashed said. "While that is a possibility, we want to see if there are local populations and if there are winter breeding sites."

He said through field, greenhouse and laboratory studies, and in collaboration with potato producers and other scientists, they are studying various aspects of pathogen-plant-vector interactions. One of these studies is addressing the effects of natural vegetation, topography, temperature fluctuations and air currents on psyllid populations and their movement pattern.

"We have set up traps in Pearsall, Seminole and Kermit, Springlake, Bushland and Dalhart," Rashed said. "We monitor changes in psyllid numbers in natural vegetation around the potato fields. We also test wild plants for their infection status, with the objective to identify pathogen reservoirs during winter when the cultivated host is absent."

He said initially they saw psyllids in Pearsall, but not Olton and Springlake. Then they began seeing more than a thousand on traps from those regions, an unusually high number.

"Psyllid numbers, however, dropped in natural vegetation during April and May," Rashed said. "This coincided with potato-emergence time, when psyllids began to infest field edges. We don't know if it was a one-time thing, or a yearly reoccurring phenomenon.

"Our survey will continue throughout the next year to address this question," he said.

"We also evaluate the percentage of insects that are carrying the pathogen," Rashed said. "Although only a low percentage of psyllids are actually carriers, if the population is high, it also means there are a lot of positive psyllids."

Moreover, he said, the damage caused by psyllids is not just through transmitting the pathogen as they also induce another condition in potato plants, called "psyllid yellows," by simply feeding on the plant tissue.

While it is too early to make any conclusions on what environmental factors affect the populations, he said they believe early spraying of the fields and seed treatments are the most reasonable way to lower the impact.

Other control approaches such as eliminating volunteer potatoes, which can be ideal hosts for psyllids prior to cultivated potato emergence, need to be integrated to increase the effectiveness of chemical control early in the season, Rashed said.

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>