Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new future for an old crop: barley enters the genomics age

23.01.2013
A Japanese team led by Kazuhiro Sato of Okayama University participates in the International Barley Sequencing Consortium (IBSC) to produce a high resolution assembly of the majority of barley genes.

Source: Okayama University, Planning and Public Information Division


Barley gene space

A Japanese team led by Kazuhiro Sato of Okayama University participates in the International Barley Sequencing Consortium (IBSC) to produce a high resolution assembly of the majority of barley genes.

The barley genome is almost twice the size of that of humans and determining the sequence of its DNA has proved to be a major challenge. This paper published in Nature is a detailed overview of the functional portions of the barley genome, revealing the order and structure of its 26,000 genes. The findings are also described in the January 2013 issue of Okayama University e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/index.html

First cultivated more than 15,000 years ago, barley is the world's fourth most important cereal crop both in terms of area of cultivation and in quantity of grain produced.

The barley genome is almost twice the size of that of humans and determining the sequence of its DNA has proved to be a major challenge. This is mainly because its genome contains a large proportion of closely related sequences, which are difficult to piece together.

A Japanese team led by Kazuhiro Sato of Okayama University participated in the International Barley Sequencing Consortium (IBSC). They succeeded in producing a high resolution assembly of the majority of barley genes in linear order.

By developing and applying a series of innovative strategies that allowed them to circumvent these difficulties, IBSC describes the location of dynamic regions of the genome that carry genes conferring resistance to diseases. This achievement also highlights the unprecedented detail in the differences (15 million positions) between a range of different barley cultivars. The report provides a detailed overview of the functional portions of the barley genome, revealing the order and structure of its 26,000 genes.

Access to the assembled catalogue of gene sequences will streamline efforts to improve barley production by breeding varieties that are better able to withstand disease and deal with adverse environmental conditions such as drought and heat stress.

Further information:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division
E-mail: www-adm@adm.okayama-u.ac.jp
Website: http://www.okayama-u.ac.jp/index_e.html

About Okayama University

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

Website: http://www.okayama-u.ac.jp/index_e.html

Journal information

・ Authors: The International Barley Sequencing Consortium
・ Title of original paper: A physical, genetic and functional sequence assembly of the barley genome.
・ Journal, volume, pages and year: Nature 491,711–716 (2012)
On line: http://www.nature.com/nature/journal/v491/n7426/full/nature11543.html
・ Digital Object Identifier (DOI): 10.1038/nature11543
・ Affiliations: Institute of Plant Science and Resources, Okayama University
・ Department website: http://www.rib.okayama-u.ac.jp

Adarsh Sandhu | Research asia research news
Further information:
http://www.rib.okayama-u.ac.jp
http://www.researchsea.com/html/article.php/aid/7581/cid/1?
http://www.researchsea.com

Further reports about: DNA Local Planning Nature Immunology Okayama Sequencing barley genes barley genome

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>