Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Z-Ultra ready to use: New chrome steels for high-temperature applications

21.12.2016

As the most important industrial construction material, with more than 2,500 grades, steel is highly specialized for diverse applications. Even the smallest changes of the composition can modify the material structure on an atomic scale and improve material properties on the macroscale. The consortium of the EU-project Z-Ultra, led by the Fraunhofer Institute for Mechanics of Materials IWM, has developed new 12% chromium alloys for high-temperature applications that are up to 30% stronger than traditional 9% chromium steels and withstand higher temperatures and pressures for a longer period of time. Atomistic simulations supported the development of the new steel alloys in a targeted manner

Higher operating temperatures in gas and coal power plants mean higher efficiencies and, therefore, less CO2 emissions per kilowatt-hour of electricity. However, the temperature capacity of real materials is naturally limited. The materials used in power plants (usually steels) lose their strength with increasing temperature and no longer withstand the stresses prevailing in turbines and pipelines.


Steps in Z-Phase formation: single chromium atoms (Cr) from the iron (Fe) matrix (left) diffuse into nitride particles, forming flat clusters (center), and these grow into periodic layers (right).

© Fraunhofer IWM


In the project Z-Ultra, a 12-ton forging was produced as a demonstrator.

© Saarschmiede

In addition, corrosion increases significantly with increasing temperature. For this reason, generations of engineers have worked on an ongoing improvement of steels so that operating temperatures of 615 °C are possible with today's 9% chromium steels, compared to a maximum of 300 °C 100 years ago.

More chrome in the steel has advantages and disadvantages

In order to further increase the operating temperature, a higher chromium content in the steel is necessary. The element chromium has the pleasant property of forming a protective chromium oxide layer on the steel surface, and it does so all the more effectively the higher the chromium content is. The thereby improved corrosion protection allows not only for higher temperatures, but also the use of biological waste and other renewable fuels, the combustion products of which can be very aggressive.

"Now, unfortunately, there's a catch, which has so far prevented the use of higher chromium contents: the remarkable strength of what are currently the best heat-resistant steels is due to finely dispersed nitride particles," explains Prof. Hermann Riedel, Project Manager at the Fraunhofer IWM. At these operating temperatures chromium atoms can migrate into these particles, converting them into the so-called Z-phase. At the expense of the fine nitrides, these coarse Z-phase particles grow, which are of no use in terms of strength.

"In the current 9% chromium steels, this undesirable transformation lasts for decades, whereas at 12% chromium content, it leads to an intolerable loss of strength in one year," says Riedel. For this reason, the 12% chromium steels have not yet been useable in power plants, since they are designed for a service life of more than ten years.

The trick: Use the Z-phase as a stabilizer

"In the project Z-Ultra, we have set the goal of influencing the coarse, brittle Z-phase in its growth in such a way that it is no longer harmful, but instead makes the steel more stable," explains Riedel. "We have looked for and found alloy compositions and manufacturing processes which distribute the Z phase very finely in the steel – this leads to a long-term stable particle structure," says the physicist. The best of the seven alloys developed in the project are about 30% stronger than the best conventional 9% chromium steels, have a lifetime which is 10 times higher under the same load conditions, and are considerably more corrosion resistant.

Tubes made of the new materials were tested under conditions close to those in the superheater of a power plant heat exchanger: hot water vapor inside and corrosive combustion gases and ash particles on the outside. The tests showed that the corrosion behavior of the materials up to 647 °C was still very good. The protective oxide layers developed uniformly – thicker on the outside than on the inside. Some pipes have also been tested in real power plant operation. In the meantime, they have been dismounted, examined and used again for long-term tests in a coal-fired power plant.

"In order to show their practicality, the steelmaker involved has produced a large twelve-ton forging, since it is not only the chemical composition of the steel that is responsible for the material properties, but also the manufacturing process, particularly the heat treatment," explains Riedel. Finally, it is important to maintain the outstanding material properties when welding the pipelines and other power plant parts. One focus of the project was therefore the development of suitable welding processes, including rings from the large forging as a model for welded turbine rotors.

Simulation tools for targeted alloy development

The steel developers were continuously guided by atomistic simulations in the process of adjusting the exact compositions of the new steels and the parameters of the forging process. In order to speed up the material development through the use of numerical simulation methods, the scientists at the Fraunhofer IWM used atomic and thermodynamic simulations to explore questions such as "What is the exact formation process of the Z-Phase?" and "What happens during the production and later during operation on the atomic scale?" They specifically investigated the behavior and the influence of the different alloying constituents and improved the atomic composition of the alloy with their results. For example, it was possible to determine at which content of carbon, nitrogen, niobium or tantalum the fastest or slowest process of Z-phase transformation takes place. Atomic simulations have contributed significantly to identifying the individual steps in this complex transformation process as well as to understanding their interdependencies.

Under the leadership of the Fraunhofer Institute for Mechanics of Materials IWM, six other research institutes as well as a steel producer, a power plant operator and an engineering consultancy company from the EU and from the eastern partner countries Ukraine, Georgia and Armenia participated in the EU-funded project Z-Ultra.

Info box:
Steel is the ideal material for components in high-temperature applications up to 600 °C, as can occur in power plants or in the chemical industry. In the 1980s, the development of 9% chromium steels was a major step forward, as a result of which the application temperature could be increased from 540 up to 615 °C. At those temperatures, components of 9% chromium steel last about 20 to 30 years. In the meantime, 12% chromium steels have been developed that can withstand even higher temperatures but have a lower component lifetime. In order to improve these new steels so that they qualify for industrial applications, the EU project Z-Ultra was launched.
The 12% chromium steels are interesting, since thermal electricity generation from fossil fuels is still expected to be an important part of electricity generation for many years to come: it will compensate for fluctuations in the electricity generation of renewable energies in the power grid. For economically aspiring countries inside and outside of the EU, the number of coal and gas power plants is also expected to increase. It is therefore all the more important to increase their efficiency so that the consumption of fossil fuels and CO2 emissions remain as low as possible.

Contact:
Prof. Dr. Hermann Riedel | Phone +49 761 5142-103 | hermann.riedel@iwm.fraunhofer.de
Dr. Daniel Urban | Phone +49 761 5142-378 | daniel.urban@iwm.fraunhofer.de

Weitere Informationen:

http://www.en.iwm.fraunhofer.de/press-events-publications/details/id/1190/ - press release on our website with printable images

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>