Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Without Contact Corrosion: Joining Hybrid Components of CFRP and Aluminum

24.10.2018

For lightweight construction concepts, connections consisting of lightweight metals and fibre composites represent ideal material combinations. However, as both materials show different electrochemical potentials, there is the risk of contact corrosion occurring in a hybrid composite. Within the framework of a DFG research project, Fraunhofer IFAM, in cooperation with the Faserinstitut Bremen e.V., has developed a new series-capable joining technology for the combination of cast aluminum and CFRP. Through a temperature-resistant protective layer on the CFRP component, the electrochemical corrosion processes can be prevented. At the same time, this layer also ensures a firm connection.

The combination of fibre composite materials and lightweight materials presents unique challenges to all established joining technologies. In addition to the need for high connection strengths to be maintained, the joining itself should not add any significant weight. Contact corrosion must also be prevented for both materials.


Holding bracket for aircraft manufacture produced using the hybrid casting technology.

© Fraunhofer IFAM

In addition to adhesively bonded or riveted hybrid connections, the hybrid high-pressure die casting presented here offers a new approach to save weight while simultaneously permanently preventing the problematic issue of contact corrosion.

Achieving a hybrid component with just a few process steps

Within the newly developed process, prior to the casting the CFRP structures are partially coated with a highly temperature stable plastic (PEEK), which does not begin to significantly decompose until temperatures of around 550 °C have been reached. In a subsequent casting process step, the CFRP components are placed into the high-pressure casting die and are cast in the area of the plastic with aluminum at a temperature of around 700 °C.

Through a targeted and controlled high-pressure die casting process with short cycle times as well as the selection of suitable process and material parameters, an integration of the plastic into the high-pressure casting process is possible, despite the temperature differences, without the properties of the plastic being affected.

Thus, a stable connection is created between the two materials during the initial manufacture of the aluminum component by casting. Thus, time-consuming processing steps or pre-treatment of the joining surfaces are not necessary. Undercuts can optionally be made in the joining zone in order to further increase the strength. Connective strengths of 20 MPa achieved with this process are already comparable with those of structural adhesives.

Development for series production

In many sectors such as the automobile industry, aerospace, wind energy and sports equipment as well as in conventional machine construction, the demand for hybrid materials is high. For the production of high quantities, there is a need for efficient series manufacture.

In order to meet these demands, a bracket from the aircraft manufacturing that is installed in large quantities was chosen for the feasibility study. The goal of the development team is now the further development of the hybrid casting technology based on this component so that a process window can be demonstrated for the aluminum high-pressure casting in order to be able to reproducibly manufacture hybrid connections between CFRP and aluminum in series production.

For the research activities in the field of hybrid casting, Fraunhofer IFAM has two high pressure casting facilities (Bühler, type SC N/66 with 660t closing force; Frech, DAK250 with 290t closing force) as well as peripheral equipment on an industrial series production scale. With these facilities, Fraunhofer IFAM is the largest extramural research institute in the field of casting technology in Germany.

Project partners
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
Faserinstitut Bremen e.V.

Funding
Funding code: funded by the DFG (BU 1796/11)

Wissenschaftliche Ansprechpartner:

Armin Schmid M.Sc.
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM
Phone +49 421 2246-7151 | Wiener Straße 12 | 28359 Bremen | www.ifam.fraunhofer.de | armin.schmid@ifam.fraunhofer.de

Weitere Informationen:

http://www.ifam.fraunhofer.de

Dipl.-Biol. Martina Ohle | Fraunhofer-Gesellschaft

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>