Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When superconductivity disappears in the core of a quantum tube

16.04.2018

By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level

Predicting the behaviour of electrons in a material is not easily done. Physicists from the University of Geneva (UNIGE), ETH Zurich and EPFL replaced the electrons with ultra-cold neutral lithium atoms that they had circulated in a one-dimensional quantum tube.


In a one-dimensional periodic potential, represented here by a Toblerone bar, there is no flow of electrons (represented by Gummy bears) when two of them occupy a hollow space. The research made it possible to observe similar behaviour with ultra-cold lithium-6 atoms.

Credit: © ETH Zurich

The scientists were then able to confirm an unusual state of matter that retains its insulation regardless of the level of attraction between the particles. This work, published in PRX, opens the way to the search for new materials with atypical properties.

The fact that a material is a metal or an insulator depends on a series of microscopic details, such as the strength of the interactions between electrons; the presence of impurities or obstacles; or the number of dimensions through which the charge carriers can propagate.

This high degree of complexity means that predicting the electronic properties of a given material is a hard task. Even if we know perfectly how to model the trajectory of a particle in a vacuum, we struggle to do the same thing in a material (a crystal for example), where the electrons circulate between the nuclei of positively-charged atoms.

The latter generate a periodic potential, much like a series of peaks that affect the motion of the electrons, thereby complicating predictions. Will the material be a metal? An insulator? Or a semiconductor? It will all depend on two parameters: the strength of the interaction between the electrons and the strength of the periodic potential.

The answer to these questions was found in the ongoing discussions and debates between a group of theorists, led by Thierry Giamarchi, professor in the Department of Quantum Matter Physics (physics section) in UNIGE's Faculty of Sciences, and the experimental groups based in Zurich and Lausanne, led by Martin Lebrat, from the group headed by Professor Tilman Esslinger at ETH Zurich's Institute for Quantum Electronics; and by Jean-Philippe Brantut, professor at EPFL.

The coldest place in the Universe

The researchers tackled the problem by conducting their experiments on a perfectly clean artificial material, meaning they could control the interaction and the periodic potential. Instead of circulating electrons whose long-range interactions make predictions more difficult, the scientists used ultra-cold neutral lithium-6 atoms, which they stored using a laser in two borderless tanks, veritable «bowls of light». As Thierry Giamarchi explains: «The core of this experiment is the coldest place in the universe. The temperature there only reaches 70 billionths of a degree above absolute zero, which is much lower than in an interstellar vacuum.»

The atomic reservoirs were then connected by a one-dimensional quantum tube, in which a second laser was employed to simulate the «peaks» of the periodic potential. The researchers were able to measure the conductivity of the tube while varying the relevant parameters, including the length and height of the periodic potential together with the interactions between the particles passing through it. The scientists highlighted an unusual state of matter, predicted by the theory but which no one had been able to observe until then: a band insulator that is maintained regardless of the strength of the attractive interaction between the particles.

The intuitive conclusion was that the greater the attraction between the particles, the more likely it was that the material would be a conductor or superconductor.

«It's true,» continues Professor Giamarchi, «in a three-dimensional world but in the low-dimensional quantum world, it's an urban legend. When you manage to confine the material in a one-dimensional quantum tube with a periodic potential, it remains insulating, even if there is an infinite attraction.» The huge flexibility resulting from this research paves the way for creating complex structures. «We can see this system as a kind of simulator that will define the ingredients to be used to devise a material that does not yet exist, and that could meet the requirements for future electronic systems - in quantum computers, for example» says Giamarchi.

Media Contact

Thierry Giamarchi
Thierry.Giamarchi@unige.ch
41-223-796-363

 @UNIGEnews

http://www.unige.ch 

|
Further information:
https://www.unige.ch/communication/communiques/en/2018/quand-la-supraconductivite-disparait-au-cur-dun-tube-quantique/
http://dx.doi.org/10.1103/PhysRevX.8.011053

Further reports about: EPFL ETH Electrons QUANTUM parameters quantum computers superconductivity vacuum

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>